
261

ISSN 1392–124X (print), ISSN 2335–884X (online) INFORMATION TECHNOLOGY AND CONTROL, 2016, T. 45, Nr. 3

Combined Load Balancing Algorithm in Distributed

Computing Environment

Luka Filipović

Center of Information System, University of Montenegro,

Cetinjska 2, 81000 Podgorica, Montenegro,

e-mail: lukaf@ac.me

Božo Krstajić

Faculty of Electrical Engineering, University of Montenegro,

Džordža Vašingtona bb, 81000 Podgorica, Montenegro,

e-mail: bozok@ac.me

 http://dx.doi.org/10.5755/j01.itc.45.3.13084

Abstract. Load balancing algorithms and task scheduling are one of the most important tasks in parallel application

design and implementation. Proper task assignment to processor cores can minimize execution time and increase the

performance of a parallel application. In this paper, we propose a combined load balancing algorithm based on a mixture

of well-known domain decomposition and master-slave algorithms. The proposed algorithm minimizes load imbalance

and communication between independent tasks. The proposed algorithm improved parallel efficiency using task

rescheduling, which had been confirmed with simulation results.

Keywords: Load balancing algorithms; Process scheduling; Parallel programming; Resource utilization.

1. Introduction

Many multidisciplinary scientific fields, such as

bioinformatics, biochemistry, electrical engineering

and physics, use scientific computing and distributed

computing resources for simulations of experiments.

Distributed computing clusters consist of closely

interconnected servers with multi core processors [1].

The primary focus of many researches in the area of

distributed computer scheduling is finding a way to

distribute tasks among the CPU cores in order to

achieve better performance, such as minimizing job

execution time, minimizing communication and

maximizing resource utilization. In order to determine

this, proper assignment of the tasks to the processor and

monitoring of their execution is crucial. Achieving

parallelism by redistributing the workload of parallel

application segments as computation progresses is

referred to as load balancing [2].

The main goal of load balancing algorithms is to

find an optimal schedule for the tasks which defines a

starting time and an execution resource for each task in

order to minimize overall computational time [3].

Execution time of parallel program is the time elapsed

between the start of the first task and the completion of

the slowest process or process on slowest core.

Performance optimization of parallel applications can

be done using load balancing algorithms by managing

tasks execution during application runtime [4].

The theory of the design of load balancing

algorithms started more than forty years ago [5]. Load

balancing techniques in parallel systems were

developed in two ways: job scheduling on

infrastructure and task scheduling inside parallel

applications. Various scheduling techniques were

developed for high performance and grid clusters [6]

[7] and for Cloud infrastructure [8] [9], to achieve

maximum utilization of resources, optimize application

or virtual machine execution, minimizing timespan

between jobs. Similar load balancing algorithms were

implemented for scheduling into parallel applications.

A certain part of the developed algorithms was

developed as general purpose algorithms which are

using various application and infrastructure load

parameters [10]. On the other side, there are a number

of load balancing algorithms created only for

scheduling inside specific applications.

mailto:lukaf@ac.me
mailto:bozok@ac.me

L. Filipović, B. Krstajić

262

Algorithms should be accurate, efficient, stable,

portable, and maintainable [11]. Efficient parallel

algorithm must avoid communication overheads and

load imbalance. Load imbalance of parallel application

can occur due to uneven load of computing cores which

affect low utilization of distributed system [12]. Many

load balancing algorithms have been developed in an

effort to coordinate execution time on each core

separately, reduce computation time and load

imbalance. An efficient load balancing algorithm can

improve application performance and help avoid

unnecessary delays [3]. In a real distributed

environment, a workload of resources varies and it’s

not always possible to get the resources that are

completely free or equally burdened. In addition, many

modern supercomputer architectures (such as multi-

core or SMP clusters) that look homogeneous from the

outside actually conceal a heterogeneous and dynamic

environment on the inside. For instance, processors

located within the same node are actually competing for

shared resources, and intra-node communication is

typically much faster than inter-node communication

[13]. Losses during execution of parallel applications

can happen in imbalanced applications as a result of

CPU cores idle time once they have finished their work

and wait for slowest core or group of core to finish the

given tasks. This phenomenon occurs on heterogeneous

clusters or dynamic clusters with a variable load

(clusters on which multiple users simultaneously

execute parallel applications and thus burden the

resources) [11] [14] [15].

Load balancing algorithms can be classified as

static and dynamic. Static load balancing algorithms

have good usability on homogeneous clusters while

they execute tasks on all cores which have similar

duration. Performance of programs using these

algorithms is reduced at the end of the runtime without

possibility of rescheduling. One of widely used static

algorithms is domain decomposition algorithm. On the

other side, dynamic algorithms can give better

efficiency on heterogeneous resources, but make

unnecessary communication during executing time.

The master slave algorithm is a typical representative

of dynamic algorithms [16] [17] [18].

In this paper, we analyze domain decomposition

and master slave algorithms, their strengths and

weaknesses. We create a new load balancing algorithm

by combining these two in order to minimize useless

communication between tasks and idle time. The

proposed algorithm improves parallel efficiency using

task rescheduling, which has been verified through

numerical demanding simulation.

The paper is organized as follows. A brief

description of the Domain distribution and Master slave

load balancing algorithms is given in Section 2. In

Section 3, the proposed algorithm is presented. Finally,

the simulation results and concluding remarks are given

in Sections 4 and 5.

2. Domain distribution and Master-slave load

balancing algorithms

Scheduling of parallel tasks using domain

decomposition and master slave can be used on a

various type of distributed computer resources:

homogenous clusters and heterogeneous clusters.

Depending on the type of allocated resources,

scheduling algorithms can give different efficiency

results.

In static load balancing, the assignment of tasks to

processors is performed before program execution

begins. Scheduled task is always executed on the

assigned CPU core. Static scheduling methods

minimize the overall execution time of a concurrent

program and minimize the communication delays. The

advantage of static scheduling methods is that all the

overhead of the scheduling process is incurred at

compile time, resulting in a more efficient execution

time environment compared to dynamic scheduling

methods [16] [19] [20].

Domain decomposition (DD) algorithm [17] is one

of the most used static algorithms. Many applications

in physics, chemistry, mechanics and climate modeling

simulations are parallelized using domain

decomposition algorithm. With this scheduling policy,

tasks are dispatched to all CPU cores with equal

probability, according to pre-defined rules or random

order. Efficiency of the algorithm is maximal till

moment when first cores finishes assigned jobs in Tmin

(Figure 1). From this moment, the fastest core or group

of cores are in the idle state, which induces load

imbalance and utilization losses, until Tmax moment

when parallel application finishes its work. Load

imbalance happens because duration of tasks is not

known in advance as well as the impact of external

factors which may disrupt performance, which is the

main disadvantage of this algorithm. Efficiency of

applications using domain distribution algorithm is

strongly affected by heterogeneity and variability of

distributed computer system. Domain distribution

algorithm is the most efficient when the computational

problem can be divided into equal parts and

computational load is equally distributed among the

processor cores [13].

Figure 1. Distribution of the tasks using domain

decomposition algorithm

Combined Load Balancing Algorithm in Distributed Computing Environment

263

Dynamic load balancing is based on the reschedu-

ling of processes among the CPU cores during execu-

tion time of parallel program. Rescheduling is perform-

ed by transferring tasks from the heavily loaded proce-

ssors to the lightly loaded cores with the aim of reduc-

ing the execution time and minimizing load imbalance.

The load balancing operations may be managed by a

single core or distributed among all the processing

elements that participate in the load balancing process.

Each core passes its current load information to its

neighbors at the specified time intervals, resulting the

redistribution of load among all the processing elem-

ents in a short period of time [21]. Main advantages of

dynamic algorithms is a fact that system doesn’t need

to be aware of the tasks run-time behavior before exe-

cution and adjustment of task scheduling to the resour-

ces. Disadvantage of dynamic algorithms is run-time

overhead for transferring load information among proc-

essors, decision making for the processes redistribution

and communication delays for task relocation [22].

Master-slave (MS) paradigm [18], as one of the

basic and the most used dynamic scheduling algo-

rithms, is often used in computational biology parallel

simulations [23] [24]. It involves two types of compu-

ting cores. Preprocessing, task allocation and post

processing is performed on the master core, while task

execution is performed on slave cores. Master core

generates a list of tasks that need to be executed and

sends one or more instructions to slave cores. Slave

core, upon completion of given tasks, signals the end of

assigned tasks whereupon master core allocates them

the next task or list of tasks. This routine is repeated

until all processes are finished. The advantage of the

algorithm is reflected in a good management process.

One disadvantage of an algorithm is an increased

communication between the master and slave cores and

potential waiting of slave cores for allocation of new

tasks waiting for execution. Tasks cannot be executed

on master core, so this is another disadvantage,

especially during the execution on the smaller number

of cores [25].

3. Proposed combined algorithm (CA)

In this section, a new load balancing algorithm, ba-

sed on combination of DD and MS algorithms, is prese-

nted. The motivation was to improve load balancing

performance and execution time for parallel applica-

tions which consist of many independent tasks. The

proposed combined algorithm consists of three phases.

Figure 2. The proposed algorithm

Phase 1. As seen in Figure 1, application’s usability

with DD algorithm is 100% till Tmin moment. Opposed

to this algorithm, master-slave makes load imbalance

from the start of application because tasks can’t be

executed on master core. Therefore, DD algorithm is

used in the first phase of the proposed CA algorithm

(Figure 2). In the first phase CA works as DD until Tmin

when all assigned tasks to the fastest core are finished.

The fastest core then sends signal to each other core to

finish task which it executes and terminate execution of

rest assigned unfinished tasks. This phase is finished

when all cores finish executing started tasks.

Phase 2. In the second phase, all computing cores

send reports to the pre-specified core. Each report

includes:

1. status of assigned tasks,

2. execution time of finished tasks,

3. information about resources (core speed and

allocated memory).

Pre-specified core analyzes received information,

makes a list of unfinished tasks, chooses algorithm

(DD or MS) for the third phase, and performs

rescheduling. The choice of the algorithm is performed

according to the number of computing cores,

heterogeneity of a cluster (c) and execution time of each

performed task (b).

Domain decomposition algorithm is chosen for the

third phase if:

DD1) application runs on homogeneous cluster on

less than 32 cores,

DD2) each core from the first phase executes

similar number of tasks with similar duration,

DD3) number of unfinished tasks is less or equal to

the number of cores where parallel application

executes.

Master–slave algorithm is chosen for the third phase

if:

MS1) application runs on more than 32 cores, i.e.

when master-slave algorithm can’t produce a

significant loss of utilization due execution.

MS2) application runs on heterogeneous cluster or

on clusters where load rapidly changes,

MS3) duration of tasks is significantly different,

MS4) each core from the first phase executed

significantly different number of tasks.

Rescheduling algorithm makes a list of unfinished

tasks in accordance with selected algorithm. If DD

algorithm is selected, each core receives a list of

unfinished tasks for execution. The number of assigned

tasks to each core is calculated according to the number

of tasks finished in the first phase on each core

separately. If MS algorithm is selected, then the master

core receives a list of all unfinished tasks which will be

assigned to the slave nodes for execution in the third

phase.

L. Filipović, B. Krstajić

264

Phase 3. Selected algorithm from the second phase

is executed in the third phase of the proposed algorithm.

Figure 3 presents operations of combined algorithm

per stages. In the first phase of the proposed algorithm,

the DD algorithm was used (marked with blue). The

second phase selected MS algorithm because parallel

application was started on 64 cores (according MS1

rule) and nearly half of tasks were unfinished after

termination (according MS4 rule) and made resche-

duling (marked with red). Regarding decision from the

second phase in this example, MS was executed in the

third phase (marked with green).

Figure 3. Task scheduling using combined algorithm

According to analysis and rescheduling in the sec-

ond phase, the proposed algorithm increases the efficie-

ncy and reduces execution time for parallel applications

in the third phase. The execution time of the proposed

algorithm is shorter (Figure 3) than execution time of

the standard DD algorithm measured in same condi-

tions (Figure 1). Moreover, the efficiency of the propo-

sed algorithm is increased due to minimized idle time

and improved resource usage.

Disadvantages of the combined algorithm are termi-

nation of assigned tasks at the end of the first phase and

duration of the second phase. Duration of the second

phase is insignificantly low and can’t affect the effi-

ciency of parallel application. Termination of assigned

tasks in the first phase can increase duration of this

phase only if there is one task whose duration is enor-

mously higher than duration of others. This increase of

first phase duration can affect the performance of the

whole algorithm. In that case, there is no improvement

in efficiency compared with DD and MS.

The combined algorithm works as DD algorithm

during their maximal efficiency and interrupts work

when its effectiveness starts to weaken. It has a similar

performance as DD in the case when DD has a high

efficiency. The proposed algorithm has better perfor-

mance than DD when DD has low efficiency due to

interruption and rescheduling.

CA has better performance than MS because MS

doesn’t execute tasks on master core whole time and

has less communication loses during execution time.

The MS algorithm produce less efficiency than the

proposed algorithm which starts as DD and makes

rescheduling to achieve better resource usage.

4. The results of simulation and analysis

Performance of the combined algorithm is verified

through numerical demanding application Cross-Point

queued switch (CQ) simulator for performance analysis

[26]. Simulator is parallelized using MPI [27]. It exe-

cutes simulations of eight different switching algo-

rithms (LQF, RR, ERR, FBRR, EELQF, ELQF, FBLQF

and RAND) with 12 different buffer sizes on 32 input

files of generated traffic. Simulation was performed for

matrix of 16x16 and 1.000.000 time slots. During the

preprocessing, simulator prepares 3072 independent

tasks. Simulation was performed on Paradox [28] HPC

cluster during HP-SEE project [29].

Figure 4 presents frequency of computational time

of CQ tasks. 95% of tasks finished assigned work

between 12 and 18 seconds. The average execution

time was 15.10 seconds, while the longest task was

executed in 165 seconds. The statistics is based on the

pattern of 800.000 executed tasks.

Figure 4. Frequency of task computational time

Total execution time depends on the duration of

each task and their scheduling. Simulations using DD,

MS and CA are performed on 16-128 cores. Input files

were copied on nodes in the preprocessing phase of the

application. Average results of twenty executions at

different clusters loads are presented at Figure 5.

Figure 5. Average execution time using three scheduling

algorithms on 16-128 cores

Combined Load Balancing Algorithm in Distributed Computing Environment

265

CA gave better results than DD and MS algorithms

in all conditions. The impact of rescheduling and

reduced runtime was more noticeable as the number of

cores increased. In few cases, CA required up to 0.5%

time more than DD. In the best case, CA finished

execution 21.6% faster than DD due task rescheduling

at the end of application. MS algorithm required more

time than DD and CA, especially during execution on

16 cores due to described disadvantages.

Figure 6 presents execution time comparison

between CA and other algorithms. The difference

between CA and DD ranges from 1.7% to 8.2%. DD

required more time to execute than CA due to static

scheduling process. The difference between CA and

DD was higher when the application was started on

larger number of cores.

Figure 6. Execution time comparison between

CA, DD and MS

Figure 7. Time distribution of CA’s phases

Figure 8. Algorithm choice in CA’s third phase

The difference between CA and MS was bigger,

since MS algorithm had specified weaknesses. Inability

to execute tasks on master core produced losses during

execution on lower cores. Communication between

cores during the entire process of execution caused

lower efficiency on 128 cores.

Figure 7 presents time distribution of CA phases.

Three segments are indicated: the first phase till

termination, termination and synchronization phase and

the third phase for simulations performed on 16-128

cores. Duration of termination and third phase

increased as simulation was performed on bigger

number of cores. Termination phase time, marked by

red color, increased on 128 cores because the fastest

core waited for more cores to finish tasks which were

executed in time when termination signal was sent. We

noticed high efficiency of CA and DD algorithm on 16

cores and higher number of tasks which were

rescheduled on 64-128 cores.

Figure 8 shows which algorithm performed schedu-

ling in the third phase. Domain distribution was sele-

cted in the most cases when simulation was executed

on 16 cores, because the program detected Paradox as

a homogenous cluster with a number of allowed cores

less than 32. On the other hand, master-slave had

priority in other cases because the algorithm from the

second phase detected tasks with different duration and

selected this dynamic algorithm for the third phase.

5. Conclusion

In this paper, the combined load balancing algo-

rithm for parallel applications which consist of many

independent tasks has been presented. The algorithm is

created on the strengths of the domain decomposition

and master slave algorithms and task rescheduling.

Using mixture of these, standard static and dynamic,

algorithms we reduced execution time, minimized load

imbalance and improved performance of parallel

application in various distributed environments. This

paper also identifies situations when the proposed

algorithm doesn’t provide improvements, but it still

maintains performance comparable to constituent

algorithms.

The main contribution of this paper can be

summarized as follows:

 the combined load balancing algorithm based on

domain decomposition and master slave algorithms

has been proposed,

 heuristic approach for the selection of load

balancing algorithm after domain decomposition in

the first phase,

 new algorithm improves the performance of parallel

application which consist of many independent

tasks,

 simulation results which confirmed better

performance of the combined algorithm when

compared with domain decomposition and master

slave algorithms.

L. Filipović, B. Krstajić

266

Further research will be focused on evaluation of

the combined algorithm on various heterogeneous

clusters as well as its implementation for practical

parallel applications.

Acknowledgments

This work makes use of results produced by the

High-Performance Computing Infrastructure for South

East Europe’s Research Communities (HP-SEE), a

project co-funded by the European Commission (under

contract number 261499) through the Seventh Frame-

work Programme. HP-SEE involves and addresses

specific needs of a number of new multi-disciplinary

international scientific communities (computational

physics, computational chemistry, life sciences, etc.)

and thus stimulates the use and expansion of the emer-

ging new regional HPC infrastructure and its services.

Full information is available at: http://www.hp-see.eu/.

References

[1] H. D. Karatza, R. C. Hilzer. Parallel Job Scheduling

in Homogeneous Distributed Systems. Simulation,

2003, Vol. 79, No. 5-6, 287-298.

[2] J. Dinan, S. Olivier, G. Sabin, J. Prins, P.

Sadayappan, C.-W. Tseng. Dynamic Load Balancing

of Unbalanced Computations Using Message Passing.

In: Parallel and Distributed Processing Symposium,

2007, IPDPS 2007, IEEE International, Long Beach,

CA, USA, 2007.

[3] T. Rauber, G. Rünger. Parallel Programming: for

Multicore and Cluster Systems. Springer, 2010.

[4] D. M. Abdelkader, F. Omara. Dynamic task schedu-

ling algorithm with load balancing for heterogeneous

computing system. Egyptian Informatics Journal, 2012,

Vol. 13, No. 2, 135-145.

[5] M. J. Atallah, M. Blanton. Algorithms and Theory of

Computation Handbook. Second Edition, Chapman &

Hall/CRC, 2009.

[6] S. Patil, A. Gopal. Cluster performance evaluation

using load balancing algorithm. In: International Confe-

rence on Information Communication and Embedded

Systems (ICICES) 2013, pp. 104-108.

[7] D. G. Feitelson, L. Rudolph. Job Scheduling Strategies

for Parallel Processing. Springer, 1995.

[8] M. Katyal, A. Mishra. A Comparative Study of Load

Balancing Algorithms in Cloud Computing Environ-

ment. International Journal of Distributed and Cloud

Computing, 2013, Vol. 1, Issue 2, 5-14.

[9] N. Shahapure, P. Jayarekha. Time sliced and priority

based load balancer. Advance Computing Conference

(IACC), 2015 IEEE International, pp. 154-159.

[10] A. Chhabra, G. Singh, S. S. Waraich, B. Sidhu, G.

Kumar. Qualitative Parametric Comparison of Load

Balancing Algorithms in Parallel and Distributed

Computing Environment. In: Proceedings of World

Academy of Science, Engineering and Technology

(PWASET), 2008, Vol. 2, No. 4, pp. 1292-1295.

[11] Y. Deng, Applied Parallel computing. World Scientific

Publishing Company, 2012.

[12] D. Thiébaut. Parallel Programming in C for the

Transputer, 1995.

[13] C. Banino-Rokkones. Domain Decomposition vs.

Master-Slave in Apparently Homogeneous Systems. In:

Parallel and Distributed Processing Symposium,

IPDPS 2007, IEEE International, Long Beach, CA,

USA, 2007.

[14] B. Blaise. Introduction to Parallel Computing. Law-

rence Livermore National, 2012.

[15] L. Filipović, B. Krstajić. Modified master-slave algo-

rithm for load balancing in parallel applications. ETF

Journal of Electrical Engineering, 2014, Vol. 20, No. 1,

74-83.

[16] V. Sarkar. Partitioning and Scheduling Parallel Pro-

grams for Multiprocessors. MIT Press, 1989.

[17] W. D. Gropp. Parallel Computing and Domain Decom-

position. In: Fifth Conference on Domain Decompo-

sition Methods for Partial Differential Equations, 1990,

pp. 249-361.

[18] S. Sahni. Scheduling Master-Slave Multiprocessor Sys-

tems. IEEE Transactions on Computers, 1996, Vol. 45,

No. 10, 1195-1199.

[19] B. Shirazi, M. Wang, G. Pathak. Analysis and evalua-

tion of heuristic methods for static task scheduling.

Journal of Parallel and Distributed Computing, 1990,

Vol. 10, No. 3, 222-232.

[20] B. A. Shirazi, A. R. Hurson, K. M. Kavi. Scheduling

and Load Balancing in Parallel and Distributed Sys-

tems. Wiley-IEEE Computer Society Press, 1995.

[21] D. L. Eager, E. D. Lazowska, J. Zahorjan. Adaptive

Load Sharing in Homogeneous Distributed Systems.

IEEE Transactions on Software Engineering, 1986,

Vol. 12, No. 5, 662-675.

[22] Chhabra, G. Singh. Qualitative Parametric Compari-

son of Load Balancing Algorithms in Distributed

Computing Environment. In: International Conference

on Advanced Computing and Communications,

ADCOM 2006, 2006, pp. 58-61.

[23] M. Depolli, R. Trobec, B. Filipič. Asynchronous

master-slave parallelization of differential evolution for

multi-objective optimization. Evolutionary computa-

tion, 2013, Vol. 21, No. 2, 261-291.

[24] D. Hadka, K. Madduri, P. Reed. Scalability Analysis

of the Asynchronous, Master-Slave Borg Multiobjec-

tive Evolutionary Algorithm. In: IEEE 27th Interna-

tional Symposium on Parallel & Distributed Processing

Workshops and PhD Forum, 2013, pp. 425-434.

[25] S. Sahni, G. Vairaktarakis. The master-slave para-

digm in parallel computer and industrial settings.

Journal of Global Optimization, 1996, Vol. 9, No. 3-4,

357-377.

[26] M. Radonjic, I. Radusinovic. Impact of scheduling

algorithms on performance of crosspoint-queued

switch. Annals of Telecommunications, 2011, Vol. 66,

No. 5-6, 363-376.

[27] MPI Forum, MPI: A Message-Passing Interface Stan-

dard. University of Tennessee, Knoxville, Tennessee,

1994.

[28] A. Balaz, O. Prnjat, D. Vudragovic, V. Slavnic, I.

Liabotis, E. Atanassov, B. Jakimovski and M. Savic.

Development of Grid E-Infrastructure in South-Eastern

Europe. Journal of Grid Computing, 2011, Vol. 9,

No. 2, 135-154.

[29] High-Performance Computing Infrastructure for South

East Europe’s Research Communities (HP SEE)

[Online]. Available: https://www.hp-see.eu/.

Received September 2015.

http://www.hp-see.eu/

