
278

ISSN 1392–124X (print), ISSN 2335–884X (online) INFORMATION TECHNOLOGY AND CONTROL, 2016, T. 45, Nr. 3

Approaches to Access Control Policy Comparison and

the Inter-Domain Role Mapping Problem

Hong Xiang1,2, Xiaofeng Xia1,2,*, Haibo Hu1,2, Sheng Wang3,

Jun Sang1,2, Chunxiao Ye1

1 Key Laboratory of Dependable Service Computing in Cyber Physical Society,

Ministry of Education, Chongqing, 400044, China

e-mail: xiaxiaofeng@cqu.edu.cn

2 School of Software Engineering, Chongqing University, Chongqing, 401331, China

3 Department of Info. and Comm. Sec. and Tech., State Grid Si Chuan Electric Power Research Institute

 http://dx.doi.org/10.5755/j01.itc.45.3.13187

Abstract. The requirement to develop an organization makes collaboration with other organizations necessary, so

the organizations can share resources to perform common tasks. Different organizational domains use different access

control models to protect their resources from unauthorized access. Organizational collaboration is an important goal for

distributed computing paradigms, but policy inconsistencies between domains will cause problems in a collaboration

model that add to the problems involved in constructing the collaboration model itself. These problems provide the two

challenges that motivate the research presented here: (1) the construction of a collaboration model across multiple

domains protected by different access control models; and (2) ensuring that the access control policy used by a

participating domain contains no inconsistencies; (3) we also present our new approach to solving the inter-domain role

mapping (IDRM) problem, i.e., to determine the minimal role set that covers requested permissions from a collaborating

domain. We also analyse our algorithms, present the results of our tests, and compare our results with the results of

existing approaches.

Keywords: abduction; role mapping; policy comparison; equivalent access; collaboration model.

1. Introduction

Organizations share resources to enable them to

collaborate on certain common projects or tasks. This

pattern of collaboration requires that the collaborators

can specify new access control policies for the

resources shared between the organization domains

involved. The first problem that occurs is determining

how a secure collaboration between domains with

distinct access control models should be built.

Access control models have core model semantics,

e.g., the “role” concept in the role based access control

(RBAC) model [15]. Role mapping is the current

approach to inter-domain collaboration in the RBAC

model. It assumes that the RBAC is the model context

that is common to all the organizations involved. A

global access control policy is built on the role

mappings, and some inter-domain role-inheritances are

specified so that each of the domains involved can

* Corresponding author

authorize external requests according to the cross-

domain inheritances. However, neither role mapping

nor a global policy can be built on these models if the

organization domains (including the collaboration

domain) apply distinct access control models.

Organizational collaboration also introduces a

second problem, i.e. the inter-domain role mapping

(IDRM) problem [9]. The IDRM problem is the need to

identify the minimal role set including the permissions

requested in the collaboration domain. This problem

can be defined as the identification of an “appropriate”

set of core model semantics that includes the requested

permission set. Collaborations have different

requirements of this set of core model semantics. The

RBAC model domain may require a minimal role set,

but the MAC model domain may need the whole

security lattice.

There are three different categories of policy

inconsistency in access control, namely inconsistencies

Approaches to Access Control Policy Comparison and the Inter-Domain Role Mapping Problem

279

between the policy and system specifications, modality

conflicts between the rules in the policy, and non-

compliance between the policies. The policy

compliance problem is one of the inconsistency

categories in the access control policies. One of the

ways of coping with this problem is “policy

comparison”. In this paper, we will (1) build a

collaboration model between distinct access control

models, (2) use a resolution and abduction based

approach (READ) to find policy non-compliances, and

(3) develop the algorithms to identify an appropriate set

of core model semantics for the requested permission

set. The remaining sections are organized as follows. In

section 2 we describe research that is related to the

problem we address, and in section 3 we present a new

collaboration model based on equivalent access. We

describe our resolution based abductive approach to

comparing access control policies in section 4. The

supporting algorithms and methods for handling the

IDRM problem, the results of the appropriate tests, and

a comparison of our results with the results obtained

using other algorithms, are presented in section 5. We

draw our conclusions in section 6.

2. Related work

In recent years various contributions have been

made to the subjects of access control models and colla-

borations between organizations. A context-dependent

RBAC model [1] has been proposed for enforcing

access control in web-based collaboration environ-

ments. Organization-based access control (OrBAC) [2]

was constructed using an RBAC model as the concrete

level, and OrBAC in this case refers to common organi-

zational contextual entities at the abstract level.

PolyOrBAC [3] is based on OrBAC and was proposed

for implementing collaborations between organizations

that use OrBAC models in their domains. PolyOrBAC

takes advantage of abstract organizational entities and

web service mechanisms, such as UDDI, XML, and

SOAP [19], to enforce a global collaboration frame-

work allowing the organization domains to interact.

Currently, efforts to find policy inconsistencies are

mainly focused on the first two categories mentioned

above, and great efforts have been made to analyse or

verify consistencies between policy and pre-specified

system properties (e.g., cardinality constraints and the

separation of duty constraints for different roles).

We concentrate on two aspects of the subject

described above, namely the application of the

abduction technique to access control policies and the

determination of inconsistencies between policies, as a

reasonable consequent work of [20, 21]. Koshutanski

and Massacci [4] proposed the use of interactive access

control between servers and clients, i.e., they used

abduction to calculate the missing credentials that are

required for the clients to be allowed access. Becker et

al. [5] proposed an algorithm for evaluating Datalog-

based policies using a tabulation technique, and this

was also presented as a state transition system. This

algorithm was extended to include the calculation of

abductive solutions [6]. Abduction was calculated in

the algorithm to explain access denials and to automate

delegation, but the algorithm did not include solutions

to policy inconsistency problems. Gupta et al. [7]

proposed an abductive approach based on the abductive

analysis approach [6] to calculate the conditions under

which the initial facts allow the specified goal to be

attained. Bistarelli et al. [8] also used abduction

analysis to calculate the credentials that would be

required and the appropriate trust levels.

Other research into collaboration and inter-domain

operations has focused on the IDRM problem. A

greedy-search-based algorithm has been proposed [9]

as an approximate solution to the IDRM problem, but

the simple greedy-search algorithm was found to be

non-terminating and have a local-maxima problem. We

compare the problems involved in these approaches

and our approach in section 5. Another method based

on the greedy-search algorithm [10] was developed to

improve on the greedy-search-based algorithm

mentioned above [9], but it could also not exclude the

local-maxima problem.

3. Equivalent access and collaboration model

In these section we introduce a novel equivalent

access based organizational collaboration model, but

first of all, about organizational collaboration, we have

3 points of view necessary to be explained. In sections

3, 4 and 5, our contributed work will be illustrated to

support these points:

1. Organizational collaboration needs appro-

priate model, while traditional collaboration

models, such as models depicted in section 2,

are built on those domains which adopt only

RBAC policies. However the real world

organizational domains apply usually hybrid

access control models, i.e. combined models

of RBAC, DAC, MAC, etc.

2. Before an appropriate collaboration model is

built, we need a way of checking the policy

inconsistency between domains, so as to the

newly built collaboration model will correctly

evaluate the equivalent accesses.

3. To build a collaboration model, each domain

has to compute which access control model

entity set should be involved in the collabora-

tion, and to ensure the involved set is mini-

mum according to the least privilege regula-

tion. This refers to inter-domain role mapping

(IDRM) problem.

An organization domain or collaboration domain D

should contain:

1. User(U), resource (E), and action (A): the sets

of system users, resources, and operations on

the resources;

2. T: the set of Tag objects, e.g., roles and

security labels.

H. Xiang, X. Xia, H. Hu, S. Wang, J. Sang, C. Ye

280

Equivalent access means that a user’s access to a

resource under the collaboration domain policy is the

same as would occur under the user’s organizational

domain policy.

Equivalent access should be the preliminary goal of

collaborations between organizations, i.e., the colla-

boration construction process should allow equivalent

access to the required resources in the domains that are

involved in the collaboration (the “engaging do-

mains”). The collaboration scenario we discuss here

has the collaboration domain Dc and a series of original

domains D1, …, Dn, where n 2. Each domain applies

its own access control model and policy. For a collabo-

ration group (Dc; D1, …, Dn), there are two types of en-

tity relationships between Dc and the engaging domains

(Di ; i[1, n]). One type is the entity mapping set and

the other is the entity linking set. We call the former Q,

and this simply maps entities Di onto those of Dc. This

mapping means that any resource e in Di has a corres-

ponding virtual resource e′ in Dc. The mappings are

classified as “user”, “resource”, and “action”, i.e., {ζu,

ζe, ζa}, which are defined in the following equations:

Q〈Dc,Di〉
:= {ζ〈Dc,Di〉

u
, ζ〈Dc,Di〉

e
 , ζ〈Dc,Di〉

a } (1)

ζ〈Dc,Di〉
u

:= {〈u,u'〉|
u'∈Ui⋀Ui∈Di,

u∈Uc⋀Uc∈Dc

} (2)

ζ〈Dc,Di〉
e

:= {〈e,e'〉|
e'∈Ei⋀Ei∈Di,

e∈Ec⋀Ec∈Dc

} (3)

ζ〈Dc,Di〉
a

:= {〈a,a'〉|
a'∈Ai⋀Ai∈Di,

a∈Ac⋀Ac∈Dc

}. (4)

Another relationship is the entity linking set L. It

needs to be calculated and will be introduced later.

Definition 1 For a collaboration group (Dc; D1, …,

Dn), considering any engaging domain (Di ; i[1, n])

and its mapping set Q, there are u userc and e

resourcec, and u′ useri and e′ resourcei , such that <

u, u′ >ζu and < e, e′ >ζe. We will say that access by

u to e is equivalent to access by u′ to e′ under policies

Pc and Pi, if the substitutions are Dc = {Ux /u, Ex /e, Ax

/read} and Di = {Ux /u′, Ex /e′, Ax /read′}, and

Pc⊨mayAccess(Ux,Ex,Ax)⟦θDc
⟧

⋀Pi⊨mayAccess(Ux,Ex,Ax)⟦θDi
⟧ (5)

meaning that equivalent access can be written as:

mayAccess(Ux,Ex,Ax)⟦θDc
,θDi

⟧|
〈Pc,Pi〉

. (6)

where Ux, Ex, Ax are variables respectively for user,

resource, and action.

Definition 2 The elements of the entity linking set

indicate the pairs of related “Tag” objects from the

collaboration (Dc) and original (Di) domains. When two

substitutions, Dc and Di, are applied to the request

“mayAccess (Ux , Ex , Ax)” towards their own policies

Pc and Pi, they have equivalent access which is defined

by equation (6), besides they still have to satisfy the

following definitions:

SDc
= {r|

∀r∈TDc
,

Pc⊨mayAccess(Ux,Ex,Ax)⟦θDc
⟧
} (7)

SDi
= {r|

∀r∈TDi
,

Pi⊨mayAccess(Ux,Ex,Ax)⟦θDi
⟧
} (8)

where θDc ={Ux/u, Ex/e, Ax/read} and θDi ={Ux/u’,

Ex/e’, Ax/read’}.

Then the entity linking set L〈Dc, Di〉
 is defined as the

following rule:

L〈Dc, Di〉 = {〈r, l〉|〈r, l〉∈SDc
×SDi

} (9)

Definition 3 For a collaboration group (Dc; D1, …,

Dn), considering any original domain (Di ; i[1, n]) and

its mapping set Q<Dc, Di> with Dc , the collaboration

model for the group will be defined by the above

definitions of the organizational domain as a union of

pairs, as shown below.

Γ=⋃ 〈Q〈Dc,Di〉
,L〈Dc,Di〉

〉n
i=1 (10)

The model is an equivalent-access-based colla-

boration model (EABC), and it avoids cyclic inheri-

tance problem in core access control model semantics

in collaborations and can work in the context of distinct

access control models. We introduce a new role of

“mediator”. This role holds the collaboration model

information and makes decisions on the access requests

from the collaboration domain using this model infor-

mation. Informally, request permission is only allowed

if the request is permitted in the collaboration domain

and the corresponding mapping request is also per-

mitted in the engaging domain, i.e., equivalent access

exists and the request information is consistent with the

collaboration model . The principle on which the me-

diator makes a decision is formally specified in the sta-

tements below. We will assume that two substitutions,

Dc and Di, come from a collaboration domain Dc and

an engaging domain Di, respectively, and that they are

defined as in definition 1. The corresponding users, re-

sources, and actions will have the relationships defined

in principle C1, as shown below:

C1:

(

〈〈u,u'〉,〈e,e'〉,〈a,a'〉〉∈Q〈Dc,Di〉

⋀〈t,t'〉∈L〈〈Dc,Di〉〉

Γ=⋃ 〈Q〈Dc,Di〉
,L〈Dc,Di〉

〉n
i=1

)

where ∃t ∈ TDc and ∃t′ ∈ TDi.

In addition, there is another principle C2 about

equivalent access, which is defined by the previous

equation (6). Hence, a collaboration process mediator

must make a decision from the result of

C1⋀ C2 (11)

The mediator role proposed in this paper emphasi-

zes the building of the entity mapping set and the link-

ing set using equivalent access. Principle C1 allows the

authorization to be made at a more detailed level, which

means that we can precisely select one or more required

permissions held by a “Tag” object (e.g., a role) but not

necessarily include non-required permissions.

Approaches to Access Control Policy Comparison and the Inter-Domain Role Mapping Problem

281

4. READ approach: a policy compliance

problem in organizational collaboration

To ensure that the access control policies specified

in collaboration domain comply with the original

policies for the corresponding resources in original

domains, we need to compare two policies.

We call the comparative relationship between two

policies a permissive relationship, which reflects the

policy containment aspect of the relationship. In

publication [12], policy containment was defined as:

Ref-definition 1: Let P(Q)(Permit) denote the

Permit table defined by policy P over a set of facts Q

(and similarly for P(Q)(Deny)).

P2 contains P1 in context C, written 𝑃1 ≼
𝐶 𝑃2, if for

all instances Q of edb* and idb facts in (C, P1)-

accessible states, P1(Q)(Permit)P2(Q)(Permit)★ and

P2(Q)(Deny)P1(Q)(Deny)★. P1 and P2 are

contextually equivalent if P1≼
CP2 and P2≼

CP1.

(* edb and idb are extensional and intentional

predicates [22], respectively.)

The access control policies discussed in this paper

are restricted to positive policies. We view these

policies as a set of Datalog rules, so an access request

(query) made to a particular resource corresponds with

an evaluation of this request using the given rules. The

first ★ condition in “Ref-definition” is equivalent to

REQ
P1
⟶REQ

P2

which indicates that if any access request “REQ” is

allowed in P1 then it must also be allowed in P2.

We will focus on checking this condition using

an approach based on rule resolution and abduction.

The method determines the comparison relationship

between two access control policies in the collaboration

between the organizations. First, we need to introduce

the preliminary definitions that are relevant to our

approach.

4.1. Definitions and examples

In this section, a formal definition of the problem

will be given first, then some basic definitions, such as

term/atom, ground term/atom, clause, and rule, will be

given following conventional definitions and termino-

logy [11, 13, 14]. We use the role-based access control

model (RBAC) as an example to illustrate our

approach. The concepts from the RBAC model (such as

roles, resources, and users) that are used in this paper

follow the definitions that have been published [15, 16].

The extra definitions are listed below.

(1) Extensible predicates (ETPs): the set of

predicates that can be used to extend policy rules. An

ETP must be designated in advance by the READ user.

(2) Fixed predicates (FXPs): the set of predicates

that provides basic information about the current policy

domain. These predicates are fixed when a policy is

created and must be designated in advance.

(3) Abductive result set: a set of abductive

results generated using corresponding access requests

according to a specific access control policy, e.g.,

abductive sets “Ai” and “Aj” in Figure 2.

(4) Refutation tree: a tree structure constructed by

the resolution algorithm. The tree nodes indicate the

atoms that remain unresolved by the given Datalog

rules and the edges indicate the phases of the resolution

process. A refutation tree reflects the resolution process

for a given query atom using a set of Datalog rules.

(5) Solution node/table: a solution node is a node

on a refutation tree containing an atom that has to be

resolved using given Datalog rules. A solution table is

used to store the solution nodes and the solutions to

each solution node, e.g., A(e, c) is one of the solutions

for solution node A(e, Y) (e and c are constants and Y

is a variable).

(6) Lookup node: a node on a refutation tree that is

an instance of a specific solution node in the solution

table. The lookup node is resolved by finding its

solution.

(7) Table registration: used to classify a tree node

as either a lookup node or a solution node.

The READ algorithm focuses on solving the policy

compliance problem, which refers, as we have

mentioned earlier, to the permissive relationship

between policies. We assume that policy Po belongs to

the original policy domain and that policy Pt belongs to

the target policy domain. We use the symbol “≼” to

indicate the “less permissive” relationship. We assume

that policies Po and Pt are tested for the same access

request “REQ” (e.g., mayAccess (Tomy, file1)), which

is defined as an atom, so the abductive result sets that

are generated for “REQ” are:

AB_SETS
P1

 = {ϕ
1
… ϕ

i
}, AB_SETS

P2

= {ψ
1
… ψ

j
}(12)

where i is an abductive result set for request “REQ” in

Po, j is an abductive result set for request “REQ” in Pt

, and i, j 1. Therefore, we formally define the

relationship “≼” (policy compliance) for positive

policies as shown in the following definition.

Definition 4 Pt is less permissive than Po if and only

if, for any abductive result set “ψj” in AB_SETSPt there

is an abductive result set “ϕi” in AB_SETSPo, such that

ψj implies ϕi,

P2≼P1⟺∀ψ
j
∈AB_SETS

Pt
∃ϕ

i
∈AB_SETS

Po

where i is an abductive result set for request “REQ” in

Po, j is an abductive result set for request “REQ” in Pt,

and i, j 1.

Example 1 Assume that organization O uses RBAC

model and the constant entities include user, resource,

role and action sets, denoted by U, E, R and A. Each

resource belongs to one resource class.

– U = {lee, jones, tomy}, R = {r1, r2, r3} and

– E = {file1, file2, file3, file4, file5}, A = {access},

resource_class = {e1, e2, e3}.

Two simple policies, (a) and (b), are specified for

these entities, as shown in Figure 1. Policy (a) is the

original policy, which states that access will be allowed

H. Xiang, X. Xia, H. Hu, S. Wang, J. Sang, C. Ye

282

Figure 1. Two access control policies

only if a user has an appropriate role and belongs to a

“financial” department. Policy (b) is the target policy,

which states that access will be allowed if a user has an

appropriate role.

To simplify the example, we assume that there is

only one action, “access”, in the original and target po-

licies. Three different access possibilities are specified

if a resource is to be accessed (rules 1, 2, and 3 in poli-

cies (a) and (b)), but we also add a hierarchical resource

definition into the policies specified in Figure 1. All of

the predicates used in example 1 will be classified into

ETPs and FXPs, as in Table 1. For the policy examples

shown in Figure 1, the parameters used for the example

policy indicate variables if they contain no lowercase

letters and constants if they contain no capital letters,

otherwise they indicate predicate names.

Example 2 A graph reachability example introdu-

ced in the OLDT algorithm in “Program 2.1” in a paper

published by Tamaki and Sato [17]), where the graph

reachability problem is specified with the following

Datalog rules:

reach(X, Y) :- reach(X, Z), edge(Z, Y).

reach(X, X).

edge(a, b).

edge(a, c).

edge(b, a).

edge(b, d).

Table 1. Predicates used in example 1

Example 3 An example that was introduced in

Becker’s algorithm in “Example 2.4” in a paper

published by Becker and Nanz [6]. The example 3’s

Datalog rules are given as:

canRead(X, foo) :- isEmployee(X), inWorkgroup(X, Y).

canRead(bob, foo).

isEmployee(alice).

inWorkgroup(alice, WG23).

Examples 2 and 3 will be used to test the refutation

and abduction processes of the READ algorithm.

Figure 2. READ algorithm framework

Approaches to Access Control Policy Comparison and the Inter-Domain Role Mapping Problem

283

Figure 3. The refutation trees: (a) computed for Example 2 and (b) for Example 3

4.2. READ algorithm

4.2.1. READ framework

The READ algorithm is composed of three sub-

algorithms, i.e., resolution, abduction, and SMT

computation, as shown in Figure 2, where A1…Ai and

A1’…Aj’ are the abductive result sets.

(1) Resolution: the resolution part of READ is

based on the tabulation algorithm, and it uses the

breadth-first level-order traversal searching strategy in

the search tree.

(2) Abduction: the abduction part is performed

after the refutation procedure of the resolution part has

ended. The abduction part calculates all the possible

solutions for the current query by reading the refutation

tree.

(3) SMT computation: The SMT technique (Z3

prover [18]) is used to check the implication

relationships in the abductive results. We obtain

abduction sets for the query using the abduction work

described above, then the sets are output in Z3 format

and the Z3 prover is used to perform a satisfiability

check, such that the comparison relationship between

the two input policies can be determined.

4.2.2. Resolution procedure

For a given access control policy P and a query

clause C0, multiple stages are required to process the

query. Some solution item(s) will be added to the

solution list at the solution node at each stage. The

whole process terminates if no solution items are

generated and there are no unused solution items for the

lookup node at a certain stage.

We tested the READ resolution process on

examples 1, 2, and 3. The query atoms “reach(a, G)”

and “canread(G, foo)” were used in the tests. These

were the same as the original queries published by [17]

and [6]. The refutation trees computed for examples 2

and 3 are shown in Figure 3a and Figure 3b,

respectively. We will now present the abductive sets

calculated from the refutation tree (Figure 3), and next

we apply the READ abduction procedure on these three

examples.

4.2.3. Abduction procedure

Different tree nodes are generated in the resolution

process, and these are: (1) the root node - initiated by

an input query atom, set as the solution node; (2)

intermediate nodes - formed by the applicable rules in

the policy, possibly set as solution nodes or lookup

nodes; and (3) leaf nodes: calculated by the complete

refutation path or containing unresolvable atoms with

fixed predicates. The abduction procedure will be

performed to calculate the abductive solutions for the

query when READ completes the calculation of the

input query.

Definition 5 An abduction process AB for a

refutation tree will start from the root node and

recursively calculate and use all of the tree nodes as

candidates for the abductive solution. The solution set

is calculated using the rules below (assuming that any

tree node is defined as Nk[B1, …, Bn], where B1, …, Bn

are the label atoms for node Nk. The null label is .

Nodes N1
k, …, Nm

k are the child nodes of node Nk, (k,

m 0)(⏉and ⊥ indicate true and false respectively).

{

Leave:

{

AB(Nk⟦⟧)=⏉

AB(Nk⟦B1,…,Bn⟧)

= {
⊥, if Bi∈FXP,i≥1.

B1∧…∧Bn, otherwise.

Node:AB(Nk⟦B1,…,Bn⟧)=(B1∧…∧Bn)

∨AB(Nk
1)∨…∨AB(Nk

m)

The substitutions generated for each node along

each path of the refutation tree during the refutation

process are kept. [6] used their algorithm on Becker’s

example (example 3), and we also tested our method on

this example. The abductive sets for the tree nodes that

H. Xiang, X. Xia, H. Hu, S. Wang, J. Sang, C. Ye

284

Figure 4. The abductive sets for the OLDT and Becker’s examples

are labelled “true” are added using a new predicate

“eQ(S1, S2)” to determine how equal the two objects

“S1” and “S2” are, as shown in Figure 3.

In Figure 4a, it presents the abduction set computed

using our READ approach for Example 2 (OLDT

example), and the abduction set for Example 3 is in

Figure 4b. Figure 4c shows the answer/residue pairs

computed for Example 3.

The abductive result sets for the input request to

policies in Example 1(Figure 1), i.e. original policy Po

and collaboration policy Pt, are presented in Figure 5.

Each symbol “” in Figure 5 connects two abductive

solutions for the input query. As defined in Example 1,

the keywords presented in Figure 5, such as “file1,

file2, financial”, etc. are constants defined in Example

1; while uppercase words, such as “ROLE1153,

ROLE2475”, “EE2475, EE2089” are intermediary

variables generated during the abduction process.

4.2.4. SMT calculation procedure

(1) The abduction solution sets for Po and Pt are

defined in section 4.1 and the example sets that were

generated are shown in Figure 5.

(2) For each abduction solution in AB_SETSPt, the

set must imply at least one of the abduction solutions in

AB_SETSPo. We use the SMT (Z3 prover) to prove the

set implication, i.e., we assume that L = 1, …, i, so

Definition 4 is equivalent to

P2≼P1⟺(ψ
1
⟶L)∧,…, (ψ

j
⟶L)

(3) The abduction results are output into Z3 format,

which is used to check the implications. The file is

specified using the set implication above, and we can

obtain an instance of the formula from Figure 5. There

are 17 abductive solutions (separated by “∨“) for sets

AB_SETSPo and AB_SETSPt:

L=ϕ
1
∨,…,∨ϕ

17

P2≼P1⟺(ψ
1
⟶L)∧,…,(ψ

17
⟶L).

One of the Z3 format input files for the abductive

sets is shown in the appendix. Therefore, from the two

example sets shown in Figure 5, we infer that the policy

shown in Figure 1b does not comply with the policy

shown in Figure 1a.

5. Inter-domain role mapping problem

5.1. Minimal role set covering the requested

permissions

We discuss the IDRM problem in this section. The

IDRM problem is defined as in [9] shown below.

Given a set of target permissions RQ, a role set R,

and role hierarchy relationships F, the solution to the

IDRM problem determines the minimal role set R′ that

covers the RQ.

The solution to the IDRM problem lies in

determining the minimal set of roles that satisfy the

given permission (target) set under role hierarchy. It can

be reduced to the “minimal set cover” (MSC) problem,

which is NP-complete.

A greedy-search based algorithm (GSA) has been

proposed to obtain a solution to the IDRM problem by

Du and Joshi [9]. They also provided another

probabilistic-greedy-search algorithm (GSA-PROB)

for the candidate role handling process using

probability p (with a value close to 1). The two

algorithms have the following problems:

 The GSA algorithm is non-terminating and will

probably not find any solution;

 The GSA algorithm has a local-maxima problem;

 The GSA-PROB algorithm searches using

probability p, and the local-maxima problem cannot

be effectively avoided.

The GSA and GSA-PROB algorithms select as

candidates only those roles that have permissions that

are a subset of the required permission set. This makes

the algorithms non-terminating if, for example, we

Approaches to Access Control Policy Comparison and the Inter-Domain Role Mapping Problem

285

Figure 5. Abductive result sets for Example 1 for “mayAccess (H, file4)”

have the following definitions for the permission set

RQ and the permissions are assigned to two roles r1 and

r2:

 RQ= {p
1
,p

2
,p

3
}, PSr1

={p
1
,p

2
,p

4
},

PSr2
={p

3
,p

5
}.

Using the GSA and GSA-PROB algorithms the

permission set RQ cannot be covered by r1 and r2

because PSr1⊈RQ and PSr2⊈RQ. The algorithms will

therefore be non-terminating. We built a collaboration

model using entity mapping and linking sets. The entity

mapping set ensures that only the requests involving

mapped entities are allowed, which means that only the

mapped permissions of role r are allowed even if a link

is made to that role. This allows our algorithm to

terminate, so r1 and r2 can be selected to cover RQ in

the example above. We propose the following three

algorithms to move towards solving the IDRM

problem. We use the following input and output

definitions in all three algorithms.

Input includes RQ, the requested permission set. R

is the set of all roles. P is the set of all permissions. RS

is the set of initially selected roles. TS is the set of

candidate roles in the output.

I. Improved GSA algorithm (IGSA)

(1) Determine all of the roles in R that have

permissions that intersect with the requested RQ and

put them into RS.

(2) For a role r in set Rs, if the permission set for r

covers a larger part of RQ than any other of the roles in

Rs, put r into the candidate set TS, remove r from Rs,

and remove the covered permissions of r from RQ.

(3) If RQ is not empty go to step (2).

II. Improved algorithm for the local-maxima

(IGSAL)

(1) Determine which permissions are assigned to a

single role r.

(2) Remove the permissions that are assigned to the

other roles in R and also assigned to r.

(3) Compare each role r′ with all of the other roles.

Remove all the overlapped permissions from r′ if one

of the permissions of r′ belongs to another role r* and

r* has more permissions than r′.

(4) If the permissions of r′ have all been removed, r′

should also be removed from R.

(5) Perform the steps in algorithm I to calculate the

candidate set TS.

III. Algorithm for the hierarchical roles (HCHY)

(1) Initially, put the roles that have no parent roles

into set S1 and remove them from the child roles’

parents list, then make a new set S2.

(2) If a role r in R has no parent roles and it does not

belong to S1 and S2, and if the convergent class set

Converg_Classes is empty, make a new convergent

class set and add r to it. If Converg_Classes is not

empty, then check every convergent class set C in it,

and add r to C if the current role r belongs to the child

role set of any role in C.

(3) Remove r from the parent role set of each child

role for r and add r to S2.

(4) Make a new set S3. Make another new set S4 for

S3 and each permission p of P. For each role r′ that holds

p, add r′ to S4 if there is a convergent class set C that

contains r′.

(5) After checking all the roles that have p, add S4

into S3 and make new sets S5 and S6.

(6) Use the recursive process “recurse” to calculate

the combinations of sets in S3 and to return the minimal

combination results.

H. Xiang, X. Xia, H. Hu, S. Wang, J. Sang, C. Ye

286

5.2. Analysis of the algorithm properties and the

test results

As previously discussed, the GSA has a local-

maxima problem, and we found that the permission

assignment relationship (i.e., one permission is

assigned to multiple roles) causes a local-maxima pro-

blem. We attempt to remove this “multi-inheritance”

from the role–permission relationship in our IGSAL

algorithm. A simple example to compare GSA, IGSA,

and IGSAL is given below:

RQ= {
p

1
,p

2
,p

3
,p

4
,p

5
,

p
6
,p

7
,p

8
,p

10
}

r0={p
1
,p

2
,p

3
,p

4
,p

5
,p

6
}, r1={p

7
}, r2={p

8
}

r3={p
10
}, r4={p

1
,p

2
,p

3
,p

4
,p

8
},

 r5={p
5
,p

6
,p

7
}.

Table 2. Comparison of IGSA, IGSAL, and GSA-PROB in

terms of the local-maxima problem

Algorithms Solutions in 100 testing (set/times)

IGSA 〈(r0,r1,r2,r3) ∕ 100〉

IGSAL 〈(r3,r4,r5) ∕ 81〉, 〈(r0,r3,r4,r5) ∕ 19〉

GSA-PROB

〈(r0,r1,r2,r3) ∕ 85〉, 〈(r3,r4,r5) ∕ 5〉,
〈(r0,r1,r3,r4) ∕ 4〉, 〈(r0,r1,r2,r3,r4) ∕ 3〉,

〈(r0,r1,r2,r3,r5) ∕ 3〉

For this example, we assume that the requested

permissions are defined by RQ. The optimal solution

allowing the role set {r0, r1, r2, r3, r4, r5} to cover RQ is

{r3, r4, r5}. The IGSA, GSA-PROB, and IGSAL were

tested 100 times in this example.

During these 100 testing, the IGSA always gave the

solution {r0, r1, r2, r3}, the GSA-PROB could not

effectively avoid the local-maxima problem, hence it

had 85 times for solution {r0, r1, r2, r3}, 5 times for

solution {r3, r4, r5}, 4 times for solution {r0, r1, r3, r4},

and 3 times for solution {r0, r1, r2, r3, r4}, as well as 3

times for solution {r0, r1, r2, r3, r5}. While the IGSAL

determined the optimal solution for the tests 81 times,

and 19 times for solution {r0, r3, r4, r5}. The results are

presented in Table 2.

We consider that IGSAL is the best approach to

avoid the local-maxima problem. We assume that the

size of the requested permissions is N. The IGSAL

spends more computation time on pre-processing the

role–permission relationships than the IGSA and GSA-

PROB, then the IGSAL starts a greedy search to obtain

a solution. However, in terms of the efficiency of the

algorithm, the IGSAL has a nested loop for checking all

the requested permissions, which gives it O(N2)

complexity. The complexities of the greedy searches in

the IGSA and GSA-PROB are O(lnN) [9], and the

second step in the IGSAL is also a greedy search, so the

final complexity of the IGSAL remains O(N2).

Randomly generating permissions and assignment

relationships allowed a test for handling 100 roles,

43000–50000 permissions, and requested permission

ranges from 1000–15000 to be performed. The results

are presented in Table 3 and show that the IGSAL is

less efficient but more precise than the IGSA. The role

hierarchy can be used to provide a minimal role set for

the requested permissions.

The hierarchies discussed in section 5.1 are called

convergent classes. The HCHY firstly calculates the

convergent classes of the roles contained in an access

control model, which is time consuming and has a

complexity of O(C1). C1 indicates that a constant

amount of time is used by the convergent classes

because the roles and role hierarchies in a domain are

determined in advance. It is only necessary to calculate

this once. The second step in the HCHY is to input the

requested permissions which has a time complexity of

O(N).

Table 3. Comparison of the efficiencies of the IGSA and IGSAL

Approaches to Access Control Policy Comparison and the Inter-Domain Role Mapping Problem

287

Table 4. Performance tests performed by the HCHY algorithm

Figure 6. Comparison of the performances of the

IGSA and the HCHY

Finally we need to use a recursive process to

determine the minimal set of roles that covers the

requested permissions, and this is only related to the

sizes of the roles, so the complexity of this process

varies with the number of role hierarchies involved,

assuming C2. The total time complexity of the HCHY

for the requested permissions is O(N)+C1 +C2. By

Table 4 and Figure 6 we can find that the HCHY is

faster than the IGSA.

An organizational domain using the RBAC model

will use a flat role structure or a hierarchical role struc-

ture. Our algorithms IGSA, IGSAL, and HCHY can

handle and make use of both of these role structures.

6. Conclusions

In this paper we have presented a new collaboration

model, EABC, based on equivalent access. The colla-

boration model covers multiple domains that are pro-

tected by separate access control models. After constr-

ucting the EABC model, we focused on the policy

inconsistency problem in the model and proposed a

READ approach to ensure that the access control policy

of an engaging domain and the collaboration policy

comply with each other. We also presented our new

approach to solving the IDRM problem, which means

determining the minimal role set that covers the

requested permissions from the collaboration domain.

We proposed algorithms for solving the IDRM problem

based on flat and hierarchical role structures, analysed

our algorithms, presented test results, and compared the

results with those of existing approaches.

We believe that our EABC model avoids cyclic

problems in core access control model semantics in

collaborations and that it can work in the context of

distinct access control models. The READ algorithm

can be used not only in collaborations between

organizations but also in other problem domains, such

as information flow control. Our future work will

include testing the scalability of our approach and

comparing it with other policy comparison approaches

for collaborations between organizations.

Acknowledgement

First and foremost, we thank the support of the Ge-

neral Project of National Natural Science Foundation of

China under grant 61472054, the Fundamental Re-

search Funds for the Central Universities of China

under grant which includes 106112015CDJXY090001,

106112013CDJZR180012, 106112014CDJZR090001

and 106112014CDJZR098801. Our work was also

supported by Specialized Research Fund for the Docto-

ral Program of Higher Education of China (SRFDP),

No. 20130191110027.

We thank professor Andreas Reuter (Heidelberg

Institute of Theoretical Study, Germany) for his advices

to the previous fundamental research of the work pre-

sented in this paper, as well as thank Klaus Tschira

Stiftung, Germany, for the scholarship support during

X. Xia’s PhD research work. We also thank Dr. Deepak

Garg in Max-Plank Institute of Software System for

discussing with X. Xia on the related work in this paper.

H. Xiang, X. Xia, H. Hu, S. Wang, J. Sang, C. Ye

288

References

[1] R. Wolf, M. Schneider. Context-Dependent Access

Control for Web-Based Collaboration Environments

with Role-Based Approach. In: Computer Network

Security, Lecture Notes in Computer Science, 2003,

Vol. 2776, pp. 267-278.

[2] A. Kalam, R. E. Baida, P. Balbiani, S. Benferhat,

F. Cuppens, Y. Deswarte, A. Miege, C. Saurel,

G. Trouessin. Organization based access control. In:

Proceedings of the 4th Workshop on Policies for Distri-

buted Systems and Networks, 2003, pp. 120-131.

[3] A. Kalam, Y. Deswarte, A. Baina, M. Kaaniche.
Access control for collaborative system: a web services

based approach. In: Proceedings of International

Conference on Web Services, 2007, pp. 1064-1071.

[4] H. Koshutanski, F. Massacci. Abduction and

deduction in logic programming for access control for

autonomic systems. Technical Report DIT-05-053,

University of Trento, Italy, 2005.

[5] M. Y. Becker, D.G. Andrew, C. Fournet. SecPAL:

Design and Semantics of a Decentralized Authorization

Language. Technical Report MSRTR-2006-120,

Microsoft Research, 2006.

[6] M. Y. Becker, S. Nanz. The role of Abduction in De-

clarative Authorization Policies. In: Proceedings of the

10th International Conference on Practical Aspects of

Declarative Languages, Springer-Verlag, Berlin, 2008,

pp. 84-89.

[7] P. Gupta, S.D. Stoller, Z. Xu. Abductive analysis of

administrative policies in rule-based access control. In:

Proceedings of the 7th International Conference on

Information Systems Security, Springer-Verlag, Berlin,

2011, pp. 412-424.

[8] S. Bistarelli, F. Martinelli, F. Santini. A formal frame-

work for trust policy negotiation in autonomic systems:

abduction with soft constraints. In: Proceedings of the

7th International conference on Autonomic and trusted

computing, Springer-Verlag, Berlin, 2010, pp. 268-282.

[9] S. Du, J. Joshi. Supporting authorization query and

inter-domain role mapping in presence of hybrid role

hierarchy. In: Proceedings of the 11th ACM Symposium

on Access control models and Technologies, 2006, pp.

228-236.

[10] L. Chen, J. Crampton. Inter-domain role mapping and

least privillege. In: Proceedings of ACM Symposium on

Access control Models and Technologies, pp. 157-162,

2007.

[11] K. R. Apt, M. H. Van Emden. Contributions to the

theory of logic programming. Journal of the ACM,

1982, Vol. 29, Issue 3, pp. 841-862.

[12] D. J. Dougherty, K. Fisler, S. Krishnamurthi. Speci-

fying and reasoning about dynamic access-control

policies. In: Proceedings of the 3rd International Joint

Conference on Automated Reasoning, Springer-Verlag,

Berlin, 2006, pp. 632-646.

[13] S. Ceri, G. Gottlob, L. Tanca. What you always

wanted to know about Datalog (and never dared to ask).

IEEE Transactions on Knowledge and Data Engi-

neering, 1989, Vol. 1, No. 1, 146-166.

[14] J. Ullman. Assigning an Appropriate Meaning to

Database Logic with Negation. Technical Report,

Stanford University, 1994.

[15] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, C. E.

Youman. Role-based access control models. IEEE

Computer, 1996, Vol. 29, No.2, 38-47.

[16] R. S. Sandhu, V. Bhamidipati, Q. Munawer. The

ARBAC97 Model for Role-Based Administration of

Roles. ACM Transactions on Information and System

Security, Special Issue on Role-Based Access Control,

1999, Vol. 2, No. 1, 105-135.

[17] H. Tamaki, T. Sato. OLD resolution with tabulation.

In: International Conference on Logic Programming,

Springer-Verlag, 1986, pp. 84-98.

[18] L. D. Moura, N. Bjørner. Satisfiability Modulo Theo-

ries: Introduction and Applications. Communications of

the ACM, 2011, Vol. 54, No.9, 69-77.

[19] D. Booth, H. Haas, F. Mccabe, E. Newcomer, M.

Champion, C. Ferris, D. Orchard. Web Services

architecture, W3C Working Group, 2004.

[20] X. Xia. READ - a resolution and abduction based

approach for policy comparison in organizational

collaboration. In: Proceedings of ASE/IEEE Interna-

tional Conference on Bio-Medical Computing, 2012,

pp. 105-112.

[21] X. Xia. A conflict detection approach for XACML

policies on hierarchical resources. In: Proceedings of

International Conference on Green Computing and

Communications, 2012, pp. 755-760.

[22] S. Abiteboul, R. Hull, V. Vianu. Foundations of

Databases. Addison Wesley, 1995, pp. 273-304.

Received September 2015.

