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Abstract. The requirement to develop an organization makes collaboration with other organizations necessary, so 

the organizations can share resources to perform common tasks. Different organizational domains use different access 

control models to protect their resources from unauthorized access. Organizational collaboration is an important goal for 

distributed computing paradigms, but policy inconsistencies between domains will cause problems in a collaboration 

model that add to the problems involved in constructing the collaboration model itself. These problems provide the two 

challenges that motivate the research presented here: (1) the construction of a collaboration model across multiple 

domains protected by different access control models; and (2) ensuring that the access control policy used by a 

participating domain contains no inconsistencies; (3) we also present our new approach to solving the inter-domain role 

mapping (IDRM) problem, i.e., to determine the minimal role set that covers requested permissions from a collaborating 

domain. We also analyse our algorithms, present the results of our tests, and compare our results with the results of 

existing approaches. 
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1. Introduction 

Organizations share resources to enable them to 

collaborate on certain common projects or tasks. This 

pattern of collaboration requires that the collaborators 

can specify new access control policies for the 

resources shared between the organization domains 

involved. The first problem that occurs is determining 

how a secure collaboration between domains with 

distinct access control models should be built. 

Access control models have core model semantics, 

e.g., the “role” concept in the role based access control 

(RBAC) model [15]. Role mapping is the current 

approach to inter-domain collaboration in the RBAC 

model. It assumes that the RBAC is the model context 

that is common to all the organizations involved. A 

global access control policy is built on the role 

mappings, and some inter-domain role-inheritances are 

specified so that each of the domains involved can 
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authorize external requests according to the cross-

domain inheritances. However, neither role mapping 

nor a global policy can be built on these models if the 

organization domains (including the collaboration 

domain) apply distinct access control models. 

Organizational collaboration also introduces a 

second problem, i.e. the inter-domain role mapping 

(IDRM) problem [9]. The IDRM problem is the need to 

identify the minimal role set including the permissions 

requested in the collaboration domain. This problem 

can be defined as the identification of an “appropriate” 

set of core model semantics that includes the requested 

permission set. Collaborations have different 

requirements of this set of core model semantics. The 

RBAC model domain may require a minimal role set, 

but the MAC model domain may need the whole 

security lattice. 

There are three different categories of policy 

inconsistency in access control, namely inconsistencies 
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between the policy and system specifications, modality 

conflicts between the rules in the policy, and non-

compliance between the policies. The policy 

compliance problem is one of the inconsistency 

categories in the access control policies. One of the 

ways of coping with this problem is “policy 

comparison”. In this paper, we will (1) build a 

collaboration model between distinct access control 

models, (2) use a resolution and abduction based 

approach (READ) to find policy non-compliances, and 

(3) develop the algorithms to identify an appropriate set 

of core model semantics for the requested permission 

set. The remaining sections are organized as follows. In 

section 2 we describe research that is related to the 

problem we address, and in section 3 we present a new 

collaboration model based on equivalent access. We 

describe our resolution based abductive approach to 

comparing access control policies in section 4. The 

supporting algorithms and methods for handling the 

IDRM problem, the results of the appropriate tests, and 

a comparison of our results with the results obtained 

using other algorithms, are presented in section 5. We 

draw our conclusions in section 6. 

2. Related work 

In recent years various contributions have been 

made to the subjects of access control models and colla-

borations between organizations. A context-dependent 

RBAC model [1] has been proposed for enforcing 

access control in web-based collaboration environ-

ments. Organization-based access control (OrBAC) [2] 

was constructed using an RBAC model as the concrete 

level, and OrBAC in this case refers to common organi-

zational contextual entities at the abstract level. 

PolyOrBAC [3] is based on OrBAC and was proposed 

for implementing collaborations between organizations 

that use OrBAC models in their domains. PolyOrBAC 

takes advantage of abstract organizational entities and 

web service mechanisms, such as UDDI, XML, and 

SOAP [19], to enforce a global collaboration frame-

work allowing the organization domains to interact. 

Currently, efforts to find policy inconsistencies are 

mainly focused on the first two categories mentioned 

above, and great efforts have been made to analyse or 

verify consistencies between policy and pre-specified 

system properties (e.g., cardinality constraints and the 

separation of duty constraints for different roles). 

We concentrate on two aspects of the subject 

described above, namely the application of the 

abduction technique to access control policies and the 

determination of inconsistencies between policies, as a 

reasonable consequent work of [20, 21]. Koshutanski 

and Massacci [4] proposed the use of interactive access 

control between servers and clients, i.e., they used 

abduction to calculate the missing credentials that are 

required for the clients to be allowed access. Becker et 

al. [5] proposed an algorithm for evaluating Datalog-

based policies using a tabulation technique, and this 

was also presented as a state transition system. This 

algorithm was extended to include the calculation of 

abductive solutions [6]. Abduction was calculated in 

the algorithm to explain access denials and to automate 

delegation, but the algorithm did not include solutions 

to policy inconsistency problems. Gupta et al. [7] 

proposed an abductive approach based on the abductive 

analysis approach [6] to calculate the conditions under 

which the initial facts allow the specified goal to be 

attained. Bistarelli et al. [8] also used abduction 

analysis to calculate the credentials that would be 

required and the appropriate trust levels. 

Other research into collaboration and inter-domain 

operations has focused on the IDRM problem. A 

greedy-search-based algorithm has been proposed [9] 

as an approximate solution to the IDRM problem, but 

the simple greedy-search algorithm was found to be 

non-terminating and have a local-maxima problem. We 

compare the problems involved in these approaches 

and our approach in section 5. Another method based 

on the greedy-search algorithm [10] was developed to 

improve on the greedy-search-based algorithm 

mentioned above [9], but it could also not exclude the 

local-maxima problem. 

3. Equivalent access and collaboration model  

In these section we introduce a novel equivalent 

access based organizational collaboration model, but 

first of all, about organizational collaboration, we have 

3 points of view necessary to be explained. In sections 

3, 4 and 5, our contributed work will be illustrated to 

support these points: 

1. Organizational collaboration needs appro-

priate model, while traditional collaboration 

models, such as models depicted in section 2, 

are built on those domains which adopt only 

RBAC policies. However the real world 

organizational domains apply usually hybrid 

access control models, i.e. combined models 

of RBAC, DAC, MAC, etc. 

2. Before an appropriate collaboration model is 

built, we need a way of checking the policy 

inconsistency between domains, so as to the 

newly built collaboration model will correctly 

evaluate the equivalent accesses. 

3. To build a collaboration model, each domain 

has to compute which access control model 

entity set should be involved in the collabora-

tion, and to ensure the involved set is mini-

mum according to the least privilege regula-

tion. This refers to inter-domain role mapping 

(IDRM) problem. 

An organization domain or collaboration domain D 

should contain: 

1. User(U), resource (E), and action (A): the sets 

of system users, resources, and operations on 

the resources; 

2. T: the set of Tag objects, e.g., roles and 

security labels. 
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Equivalent access means that a user’s access to a 

resource under the collaboration domain policy is the 

same as would occur under the user’s organizational 

domain policy. 

Equivalent access should be the preliminary goal of 

collaborations between organizations, i.e., the colla-

boration construction process should allow equivalent 

access to the required resources in the domains that are 

involved in the collaboration (the “engaging do-

mains”). The collaboration scenario we discuss here 

has the collaboration domain Dc and a series of original 

domains D1, …, Dn, where n 2. Each domain applies 

its own access control model and policy. For a collabo-

ration group (Dc; D1, …, Dn), there are two types of en-

tity relationships between Dc and the engaging domains 

(Di ; i[1, n]). One type is the entity mapping set and 

the other is the entity linking set. We call the former Q, 

and this simply maps entities Di onto those of Dc. This 

mapping means that any resource e in Di has a corres-

ponding virtual resource e′ in Dc. The mappings are 

classified as “user”, “resource”, and “action”, i.e., {ζu, 

ζe, ζa}, which are defined in the following equations: 

Q〈Dc,Di〉
:= {ζ〈Dc,Di〉

u
, ζ〈Dc,Di〉

e
 , ζ〈Dc,Di〉

a } (1) 

ζ〈Dc,Di〉
u

:= {〈u,u'〉|
u'∈Ui⋀Ui∈Di,   

u∈Uc⋀Uc∈Dc

} (2) 

ζ〈Dc,Di〉
e

:= {〈e,e'〉|
e'∈Ei⋀Ei∈Di,   

e∈Ec⋀Ec∈Dc

} (3) 

ζ〈Dc,Di〉
a

:= {〈a,a'〉|
a'∈Ai⋀Ai∈Di,   

a∈Ac⋀Ac∈Dc

}. (4) 

Another relationship is the entity linking set L. It 

needs to be calculated and will be introduced later. 

Definition 1 For a collaboration group (Dc; D1, …, 

Dn), considering any engaging domain (Di ; i[1, n]) 

and its mapping set Q, there are u userc and e 

resourcec, and u′ useri and e′  resourcei , such that < 

u, u′ >ζu and < e, e′ >ζe. We will say that access by 

u to e is equivalent to access by u′ to e′ under policies 

Pc and Pi, if the substitutions are Dc = {Ux /u, Ex /e, Ax 

/read} and Di = {Ux /u′, Ex /e′, Ax /read′}, and 

Pc⊨mayAccess(Ux,Ex,Ax)⟦θDc
⟧  

⋀Pi⊨mayAccess(Ux,Ex,Ax)⟦θDi
⟧ (5) 

meaning that equivalent access can be written as: 

mayAccess(Ux,Ex,Ax)⟦θDc
,θDi

⟧|
〈Pc,Pi〉

. (6) 

where Ux, Ex, Ax are variables respectively for user, 

resource, and action. 

Definition 2 The elements of the entity linking set 

indicate the pairs of related “Tag” objects from the 

collaboration (Dc) and original (Di) domains. When two 

substitutions, Dc and Di, are applied to the request 

“mayAccess (Ux , Ex , Ax)” towards their own policies 

Pc and Pi, they have equivalent access which is defined 

by equation (6), besides they still have to satisfy the 

following definitions: 

SDc
= {r|

∀r∈TDc
,

Pc⊨mayAccess(Ux,Ex,Ax)⟦θDc
⟧ 
} (7) 

SDi
= {r|

∀r∈TDi
,

Pi⊨mayAccess(Ux,Ex,Ax)⟦θDi
⟧ 
} (8) 

where θDc ={Ux/u, Ex/e, Ax/read} and θDi ={Ux/u’, 

Ex/e’, Ax/read’}. 

Then the entity linking set L〈Dc, Di〉
 is defined as the 

following rule: 

L〈Dc, Di〉 = {〈r, l〉|〈r, l〉∈SDc
×SDi

} (9) 

Definition 3 For a collaboration group (Dc; D1, …, 

Dn), considering any original domain (Di ; i[1, n]) and 

its mapping set Q<Dc, Di> with Dc , the collaboration 

model  for the group will be defined by the above 

definitions of the organizational domain as a union of 

pairs, as shown below. 

Γ=⋃ 〈Q〈Dc,Di〉
,L〈Dc,Di〉

〉n
i=1  (10) 

The model  is an equivalent-access-based colla-

boration model (EABC), and it avoids cyclic inheri-

tance problem in core access control model semantics 

in collaborations and can work in the context of distinct 

access control models. We introduce a new role of 

“mediator”. This role holds the collaboration model 

information and makes decisions on the access requests 

from the collaboration domain using this model infor-

mation. Informally, request permission is only allowed 

if the request is permitted in the collaboration domain 

and the corresponding mapping request is also per-

mitted in the engaging domain, i.e., equivalent access 

exists and the request information is consistent with the 

collaboration model . The principle on which the me-

diator makes a decision is formally specified in the sta-

tements below. We will assume that two substitutions, 

Dc and Di, come from a collaboration domain Dc and 

an engaging domain Di, respectively, and that they are 

defined as in definition 1. The corresponding users, re-

sources, and actions will have the relationships defined 

in principle C1, as shown below: 

C1: 

(

 
 

〈〈u,u'〉,〈e,e'〉,〈a,a'〉〉∈Q〈Dc,Di〉

⋀〈t,t'〉∈L〈〈Dc,Di〉〉

Γ=⋃ 〈Q〈Dc,Di〉
,L〈Dc,Di〉

〉n
i=1

)

 
 

 

where ∃t ∈ TDc and ∃t′ ∈ TDi. 

In addition, there is another principle C2 about 

equivalent access, which is defined by the previous 

equation (6). Hence, a collaboration process mediator 

must make a decision from the result of 

C1⋀ C2 (11) 

The mediator role proposed in this paper emphasi-

zes the building of the entity mapping set and the link-

ing set using equivalent access. Principle C1 allows the 

authorization to be made at a more detailed level, which 

means that we can precisely select one or more required 

permissions held by a “Tag” object (e.g., a role) but not 

necessarily include non-required permissions. 
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4. READ approach: a policy compliance 

problem in organizational collaboration 

To ensure that the access control policies specified 

in collaboration domain comply with the original 

policies for the corresponding resources in original 

domains, we need to compare two policies. 

We call the comparative relationship between two 

policies a permissive relationship, which reflects the 

policy containment aspect of the relationship. In 

publication [12], policy containment was defined as: 

Ref-definition 1: Let P(Q)(Permit) denote the 

Permit table defined by policy P over a set of facts Q 

(and similarly for P(Q)(Deny)).  

P2 contains P1 in context C, written 𝑃1 ≼
𝐶 𝑃2, if for 

all instances Q of edb* and idb facts in (C, P1)-

accessible states, P1(Q)(Permit)P2(Q)(Permit)★ and 

P2(Q)(Deny)P1(Q)(Deny)★. P1 and P2 are 

contextually equivalent if P1≼
CP2 and P2≼

CP1. 

(* edb and idb are extensional and intentional 

predicates [22], respectively.) 

The access control policies discussed in this paper 

are restricted to positive policies. We view these 

policies as a set of Datalog rules, so an access request 

(query) made to a particular resource corresponds with 

an evaluation of this request using the given rules. The 

first ★ condition in “Ref-definition” is equivalent to 

REQ
P1
⟶REQ

P2
  

which indicates that if any access request “REQ” is 

allowed in P1 then it must also be allowed in P2. 

We will focus on checking this condition using  

an approach based on rule resolution and abduction. 

The method determines the comparison relationship 

between two access control policies in the collaboration 

between the organizations. First, we need to introduce 

the preliminary definitions that are relevant to our 

approach. 

4.1. Definitions and examples 

In this section, a formal definition of the problem 

will be given first, then some basic definitions, such as 

term/atom, ground term/atom, clause, and rule, will be 

given following conventional definitions and termino-

logy [11, 13, 14]. We use the role-based access control 

model (RBAC) as an example to illustrate our 

approach. The concepts from the RBAC model (such as 

roles, resources, and users) that are used in this paper 

follow the definitions that have been published [15, 16]. 

The extra definitions are listed below. 

(1) Extensible predicates (ETPs): the set of 

predicates that can be used to extend policy rules. An 

ETP must be designated in advance by the READ user. 

(2) Fixed predicates (FXPs): the set of predicates 

that provides basic information about the current policy 

domain. These predicates are fixed when a policy is 

created and must be designated in advance. 

(3) Abductive result set: a set of abductive  

results generated using corresponding access requests 

according to a specific access control policy, e.g., 

abductive sets “Ai” and “Aj” in Figure 2. 

(4) Refutation tree: a tree structure constructed by 

the resolution algorithm. The tree nodes indicate the 

atoms that remain unresolved by the given Datalog 

rules and the edges indicate the phases of the resolution 

process. A refutation tree reflects the resolution process 

for a given query atom using a set of Datalog rules. 

(5) Solution node/table: a solution node is a node 

on a refutation tree containing an atom that has to be 

resolved using given Datalog rules. A solution table is 

used to store the solution nodes and the solutions to 

each solution node, e.g., A(e, c) is one of the solutions 

for solution node A(e, Y) (e and c are constants and Y 

is a variable). 

(6) Lookup node: a node on a refutation tree that is 

an instance of a specific solution node in the solution 

table. The lookup node is resolved by finding its 

solution. 

(7) Table registration: used to classify a tree node 

as either a lookup node or a solution node. 

The READ algorithm focuses on solving the policy 

compliance problem, which refers, as we have 

mentioned earlier, to the permissive relationship 

between policies. We assume that policy Po belongs to 

the original policy domain and that policy Pt belongs to 

the target policy domain. We use the symbol “≼” to 

indicate the “less permissive” relationship. We assume 

that policies Po and Pt are tested for the same access 

request “REQ” (e.g., mayAccess (Tomy, file1)), which 

is defined as an atom, so the abductive result sets that 

are generated for “REQ” are: 

AB_SETS
P1

 = {ϕ
1
… ϕ

i
}, AB_SETS

P2

= {ψ
1
… ψ

j
}(12) 

where i is an abductive result set for request “REQ” in 

Po, j is an abductive result set for request “REQ” in Pt 

, and i, j  1. Therefore, we formally define the 

relationship “≼” (policy compliance) for positive 

policies as shown in the following definition. 

Definition 4 Pt is less permissive than Po if and only 

if, for any abductive result set “ψj” in AB_SETSPt there 

is an abductive result set “ϕi” in AB_SETSPo, such that 

ψj implies ϕi, 

P2≼P1⟺∀ψ
j
∈AB_SETS

Pt
∃ϕ

i
∈AB_SETS

Po
 

where i is an abductive result set for request “REQ” in 

Po, j is an abductive result set for request “REQ” in Pt, 

and i, j  1. 

Example 1 Assume that organization O uses RBAC 

model and the constant entities include user, resource, 

role and action sets, denoted by U, E, R and A. Each 

resource belongs to one resource class. 

– U = {lee, jones, tomy}, R = {r1, r2, r3} and 

– E = {file1, file2, file3, file4, file5}, A = {access}, 

resource_class = {e1, e2, e3}. 

Two simple policies, (a) and (b), are specified for 

these entities, as shown in Figure 1. Policy (a) is the 

original policy, which states that access will be allowed 
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Figure 1. Two access control policies 

only if a user has an appropriate role and belongs to a 

“financial” department. Policy (b) is the target policy, 

which states that access will be allowed if a user has an 

appropriate role. 

To simplify the example, we assume that there is 

only one action, “access”, in the original and target po-

licies. Three different access possibilities are specified 

if a resource is to be accessed (rules 1, 2, and 3 in poli-

cies (a) and (b)), but we also add a hierarchical resource 

definition into the policies specified in Figure 1. All of 

the predicates used in example 1 will be classified into 

ETPs and FXPs, as in Table 1. For the policy examples 

shown in Figure 1, the parameters used for the example 

policy indicate variables if they contain no lowercase 

letters and constants if they contain no capital letters, 

otherwise they indicate predicate names. 

Example 2 A graph reachability example introdu-

ced in the OLDT algorithm in “Program 2.1” in a paper 

published by Tamaki and Sato [17]), where the graph 

reachability problem is specified with the following 

Datalog rules: 

reach(X, Y) :- reach(X, Z), edge(Z, Y). 

reach(X, X). 

edge(a, b). 

edge(a, c). 

edge(b, a). 

edge(b, d). 
 

Table 1. Predicates used in example 1 

 

Example 3 An example that was introduced in 

Becker’s algorithm in “Example 2.4” in a paper 

published by Becker and Nanz [6]. The example 3’s 

Datalog rules are given as: 

canRead(X, foo) :- isEmployee(X), inWorkgroup(X, Y). 

canRead(bob, foo). 

isEmployee(alice). 

inWorkgroup(alice, WG23). 
 

Examples 2 and 3 will be used to test the refutation 

and abduction processes of the READ algorithm. 

 

 

 

Figure 2. READ algorithm framework



Approaches to Access Control Policy Comparison and the Inter-Domain Role Mapping Problem 

283 

 

Figure 3. The refutation trees: (a) computed for Example 2 and (b) for Example 3 

4.2. READ algorithm 

4.2.1. READ framework 

The READ algorithm is composed of three sub-

algorithms, i.e., resolution, abduction, and SMT 

computation, as shown in Figure 2, where A1…Ai and 

A1’…Aj’ are the abductive result sets. 

(1) Resolution: the resolution part of READ is 

based on the tabulation algorithm, and it uses the 

breadth-first level-order traversal searching strategy in 

the search tree. 

(2) Abduction: the abduction part is performed 

after the refutation procedure of the resolution part has 

ended. The abduction part calculates all the possible 

solutions for the current query by reading the refutation 

tree. 

(3) SMT computation: The SMT technique (Z3 

prover [18]) is used to check the implication 

relationships in the abductive results. We obtain 

abduction sets for the query using the abduction work 

described above, then the sets are output in Z3 format 

and the Z3 prover is used to perform a satisfiability 

check, such that the comparison relationship between 

the two input policies can be determined. 

4.2.2. Resolution procedure 

For a given access control policy P and a query 

clause C0, multiple stages are required to process the 

query. Some solution item(s) will be added to the 

solution list at the solution node at each stage. The 

whole process terminates if no solution items are 

generated and there are no unused solution items for the 

lookup node at a certain stage. 

We tested the READ resolution process on 

examples 1, 2, and 3. The query atoms “reach(a, G)” 

and “canread(G, foo)” were used in the tests. These 

were the same as the original queries published by [17] 

and [6]. The refutation trees computed for examples 2 

and 3 are shown in Figure 3a and Figure 3b, 

respectively. We will now present the abductive sets 

calculated from the refutation tree (Figure 3), and next 

we apply the READ abduction procedure on these three 

examples.  

4.2.3. Abduction procedure 

Different tree nodes are generated in the resolution 

process, and these are: (1) the root node - initiated by 

an input query atom, set as the solution node; (2) 

intermediate nodes - formed by the applicable rules in 

the policy, possibly set as solution nodes or lookup 

nodes; and (3) leaf nodes: calculated by the complete 

refutation path or containing unresolvable atoms with 

fixed predicates. The abduction procedure will be 

performed to calculate the abductive solutions for the 

query when READ completes the calculation of the 

input query. 

Definition 5 An abduction process AB for a 

refutation tree will start from the root node and 

recursively calculate and use all of the tree nodes as 

candidates for the abductive solution. The solution set 

is calculated using the rules below (assuming that any 

tree node is defined as Nk[B1, …, Bn], where B1, …, Bn 

are the label atoms for node Nk. The null label is . 

Nodes N1
k, …, Nm

k are the child nodes of node Nk, (k, 

m  0)( ⏉and ⊥ indicate true and false respectively).  

{
  
 

  
 

Leave:

{
 

 
AB(Nk⟦⟧)=⏉

AB(Nk⟦B1,…,Bn⟧)

= {
⊥,  if Bi∈FXP,i≥1.

B1∧…∧Bn,    otherwise.

Node:AB(Nk⟦B1,…,Bn⟧)=(B1∧…∧Bn)

∨AB(Nk
1)∨…∨AB(Nk

m)

  

The substitutions generated for each node along 

each path of the refutation tree during the refutation 

process are kept. [6] used their algorithm on Becker’s 

example (example 3), and we also tested our method on 

this example. The abductive sets for the tree nodes that 
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Figure 4. The abductive sets for the OLDT and Becker’s examples 

are labelled “true” are added using a new predicate 

“eQ(S1, S2)” to determine how equal the two objects 

“S1” and “S2” are, as shown in Figure 3.  

In Figure 4a, it presents the abduction set computed 

using our READ approach for Example 2 (OLDT 

example), and the abduction set for Example 3 is in 

Figure 4b. Figure 4c shows the answer/residue pairs 

computed for Example 3.  

The abductive result sets for the input request to 

policies in Example 1(Figure 1), i.e. original policy Po 

and collaboration policy Pt, are presented in Figure 5. 

Each symbol “” in Figure 5 connects two abductive 

solutions for the input query. As defined in Example 1, 

the keywords presented in Figure 5, such as “file1, 

file2, financial”, etc. are constants defined in Example 

1; while uppercase words, such as “ROLE1153, 

ROLE2475”, “EE2475, EE2089” are intermediary 

variables generated during the abduction process. 

4.2.4. SMT calculation procedure 

(1) The abduction solution sets for Po and Pt are 

defined in section 4.1 and the example sets that were 

generated are shown in Figure 5. 

(2) For each abduction solution in AB_SETSPt, the 

set must imply at least one of the abduction solutions in 

AB_SETSPo. We use the SMT (Z3 prover) to prove the 

set implication, i.e., we assume that L = 1, …, i, so 

Definition 4 is equivalent to 

P2≼P1⟺(ψ
1
⟶L)∧,…, (ψ

j
⟶L) 

(3) The abduction results are output into Z3 format, 

which is used to check the implications. The file is 

specified using the set implication above, and we can 

obtain an instance of the formula from Figure 5. There 

are 17 abductive solutions (separated by “∨“) for sets 

AB_SETSPo and AB_SETSPt: 

L=ϕ
1
∨,…,∨ϕ

17
 

P2≼P1⟺(ψ
1
⟶L)∧,…,(ψ

17
⟶L). 

One of the Z3 format input files for the abductive 

sets is shown in the appendix. Therefore, from the two 

example sets shown in Figure 5, we infer that the policy 

shown in Figure 1b does not comply with the policy 

shown in Figure 1a. 

5. Inter-domain role mapping problem 

5.1. Minimal role set covering the requested 

permissions 

We discuss the IDRM problem in this section. The 

IDRM problem is defined as in [9] shown below. 

Given a set of target permissions RQ, a role set R, 

and role hierarchy relationships F, the solution to the 

IDRM problem determines the minimal role set R′ that 

covers the RQ. 

The solution to the IDRM problem lies in 

determining the minimal set of roles that satisfy the 

given permission (target) set under role hierarchy. It can 

be reduced to the “minimal set cover” (MSC) problem, 

which is NP-complete. 

A greedy-search based algorithm (GSA) has been 

proposed to obtain a solution to the IDRM problem by 

Du and Joshi [9]. They also provided another 

probabilistic-greedy-search algorithm (GSA-PROB) 

for the candidate role handling process using 

probability p (with a value close to 1). The two 

algorithms have the following problems: 

 The GSA algorithm is non-terminating and will 

probably not find any solution; 

 The GSA algorithm has a local-maxima problem; 

 The GSA-PROB algorithm searches using 

probability p, and the local-maxima problem cannot 

be effectively avoided. 

The GSA and GSA-PROB algorithms select as 

candidates only those roles that have permissions that 

are a subset of the required permission set. This makes 

the algorithms non-terminating if, for example, we 



Approaches to Access Control Policy Comparison and the Inter-Domain Role Mapping Problem 

285 

 

Figure 5. Abductive result sets for Example 1 for “mayAccess (H, file4)” 

have the following definitions for the permission set 

RQ and the permissions are assigned to two roles r1 and 

r2: 

 RQ= {p
1
,p

2
,p

3
}, PSr1

={p
1
,p

2
,p

4
},   

PSr2
={p

3
,p

5
}. 

Using the GSA and GSA-PROB algorithms the 

permission set RQ cannot be covered by r1 and r2 

because PSr1⊈RQ and PSr2⊈RQ. The algorithms will 

therefore be non-terminating. We built a collaboration 

model using entity mapping and linking sets. The entity 

mapping set ensures that only the requests involving 

mapped entities are allowed, which means that only the 

mapped permissions of role r are allowed even if a link 

is made to that role. This allows our algorithm to 

terminate, so r1 and r2 can be selected to cover RQ in 

the example above. We propose the following three 

algorithms to move towards solving the IDRM 

problem. We use the following input and output 

definitions in all three algorithms. 

Input includes RQ, the requested permission set. R 

is the set of all roles. P is the set of all permissions. RS 

is the set of initially selected roles. TS is the set of 

candidate roles in the output. 

I. Improved GSA algorithm (IGSA) 

(1) Determine all of the roles in R that have 

permissions that intersect with the requested RQ and 

put them into RS. 

(2) For a role r in set Rs, if the permission set for r 

covers a larger part of RQ than any other of the roles in 

Rs, put r into the candidate set TS, remove r from Rs, 

and remove the covered permissions of r from RQ. 

(3) If RQ is not empty go to step (2). 

II. Improved algorithm for the local-maxima 

(IGSAL) 

(1) Determine which permissions are assigned to a 

single role r. 

(2) Remove the permissions that are assigned to the 

other roles in R and also assigned to r. 

(3) Compare each role r′ with all of the other roles. 

Remove all the overlapped permissions from r′ if one 

of the permissions of r′ belongs to another role r* and 

r* has more permissions than r′. 

(4) If the permissions of r′ have all been removed, r′ 

should also be removed from R. 

(5) Perform the steps in algorithm I to calculate the 

candidate set TS. 

III. Algorithm for the hierarchical roles (HCHY) 

(1) Initially, put the roles that have no parent roles 

into set S1 and remove them from the child roles’ 

parents list, then make a new set S2. 

(2) If a role r in R has no parent roles and it does not 

belong to S1 and S2, and if the convergent class set 

Converg_Classes is empty, make a new convergent 

class set and add r to it. If Converg_Classes is not 

empty, then check every convergent class set C in it, 

and add r to C if the current role r belongs to the child 

role set of any role in C. 

(3) Remove r from the parent role set of each child 

role for r and add r to S2. 

(4) Make a new set S3. Make another new set S4 for 

S3 and each permission p of P. For each role r′ that holds 

p, add r′ to S4 if there is a convergent class set C that 

contains r′. 

(5) After checking all the roles that have p, add S4 

into S3 and make new sets S5 and S6. 

(6) Use the recursive process “recurse” to calculate 

the combinations of sets in S3 and to return the minimal 

combination results. 
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5.2. Analysis of the algorithm properties and the 

test results 

As previously discussed, the GSA has a local-

maxima problem, and we found that the permission 

assignment relationship (i.e., one permission is 

assigned to multiple roles) causes a local-maxima pro-

blem. We attempt to remove this “multi-inheritance” 

from the role–permission relationship in our IGSAL 

algorithm. A simple example to compare GSA, IGSA, 

and IGSAL is given below: 

RQ= { 
p

1
,p

2
,p

3
,p

4
,p

5
,

p
6
,p

7
,p

8
,p

10
}  

r0={p
1
,p

2
,p

3
,p

4
,p

5
,p

6
}, r1={p

7
}, r2={p

8
}  

r3={p
10
}, r4={p

1
,p

2
,p

3
,p

4
,p

8
},  

 r5={p
5
,p

6
,p

7
}. 

 

Table 2. Comparison of IGSA, IGSAL, and GSA-PROB in 

terms of the local-maxima problem 

Algorithms Solutions in 100 testing (set/times) 

IGSA 〈(r0,r1,r2,r3) ∕ 100〉 

IGSAL 〈(r3,r4,r5) ∕ 81〉, 〈(r0,r3,r4,r5) ∕ 19〉 

GSA-PROB 

〈(r0,r1,r2,r3) ∕ 85〉, 〈(r3,r4,r5) ∕ 5〉, 
〈(r0,r1,r3,r4) ∕ 4〉, 〈(r0,r1,r2,r3,r4) ∕ 3〉,

〈(r0,r1,r2,r3,r5)  ∕ 3〉 

 

For this example, we assume that the requested 

permissions are defined by RQ. The optimal solution 

allowing the role set {r0, r1, r2, r3, r4, r5} to cover RQ is 

{r3, r4, r5}. The IGSA, GSA-PROB, and IGSAL were 

tested 100 times in this example.  

During these 100 testing, the IGSA always gave the 

solution {r0, r1, r2, r3}, the GSA-PROB could not 

effectively avoid the local-maxima problem, hence it 

had 85 times for solution {r0, r1, r2, r3}, 5 times for 

solution {r3, r4, r5}, 4 times for solution {r0, r1, r3, r4}, 

and 3 times for solution {r0, r1, r2, r3, r4}, as well as 3 

times for solution {r0, r1, r2, r3, r5}. While the IGSAL 

determined the optimal solution for the tests 81 times, 

and 19 times for solution {r0, r3, r4, r5}. The results are 

presented in Table 2. 

We consider that IGSAL is the best approach to 

avoid the local-maxima problem. We assume that the 

size of the requested permissions is N. The IGSAL 

spends more computation time on pre-processing the 

role–permission relationships than the IGSA and GSA-

PROB, then the IGSAL starts a greedy search to obtain 

a solution. However, in terms of the efficiency of the 

algorithm, the IGSAL has a nested loop for checking all 

the requested permissions, which gives it O(N2) 

complexity. The complexities of the greedy searches in 

the IGSA and GSA-PROB are O(lnN) [9], and the 

second step in the IGSAL is also a greedy search, so the 

final complexity of the IGSAL remains O(N2). 

Randomly generating permissions and assignment 

relationships allowed a test for handling 100 roles, 

43000–50000 permissions, and requested permission 

ranges from 1000–15000 to be performed. The results 

are presented in Table 3 and show that the IGSAL is 

less efficient but more precise than the IGSA. The role 

hierarchy can be used to provide a minimal role set for 

the requested permissions. 

The hierarchies discussed in section 5.1 are called 

convergent classes. The HCHY firstly calculates the 

convergent classes of the roles contained in an access 

control model, which is time consuming and has a 

complexity of O(C1). C1 indicates that a constant 

amount of time is used by the convergent classes 

because the roles and role hierarchies in a domain are 

determined in advance. It is only necessary to calculate 

this once. The second step in the HCHY is to input the 

requested permissions which has a time complexity of 

O(N).  
 

Table 3. Comparison of the efficiencies of the IGSA and IGSAL 
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Table 4. Performance tests performed by the HCHY algorithm 

 

 

 

Figure 6. Comparison of the performances of the  

IGSA and the HCHY 

Finally we need to use a recursive process to 

determine the minimal set of roles that covers the 

requested permissions, and this is only related to the 

sizes of the roles, so the complexity of this process 

varies with the number of role hierarchies involved, 

assuming C2. The total time complexity of the HCHY 

for the requested permissions is O(N)+C1 +C2. By 

Table 4 and Figure 6 we can find that the HCHY is 

faster than the IGSA.  

An organizational domain using the RBAC model 

will use a flat role structure or a hierarchical role struc-

ture. Our algorithms IGSA, IGSAL, and HCHY can 

handle and make use of both of these role structures. 

6. Conclusions 

In this paper we have presented a new collaboration 

model, EABC, based on equivalent access. The colla-

boration model covers multiple domains that are pro-

tected by separate access control models. After constr-

ucting the EABC model, we focused on the policy 

inconsistency problem in the model and proposed a 

READ approach to ensure that the access control policy 

of an engaging domain and the collaboration policy 

comply with each other. We also presented our new 

approach to solving the IDRM problem, which means 

determining the minimal role set that covers the 

requested permissions from the collaboration domain. 

We proposed algorithms for solving the IDRM problem 

based on flat and hierarchical role structures, analysed 

our algorithms, presented test results, and compared the 

results with those of existing approaches. 

We believe that our EABC model avoids cyclic 

problems in core access control model semantics in 

collaborations and that it can work in the context of 

distinct access control models. The READ algorithm 

can be used not only in collaborations between 

organizations but also in other problem domains, such 

as information flow control. Our future work will 

include testing the scalability of our approach and 

comparing it with other policy comparison approaches 

for collaborations between organizations. 
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