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Abstract. The modal-synthesis based approach is employed for obtaining the higher-order dynamic 1D finite 

elements with enhanced convergence properties. The obtained dynamic models are used for modelling short transient 

waves and wave pulses propagating in elastic or acoustic environments by using rough space steps. Only few nodal 

points per pulse length are enough for obtaining reasonable simulation results. The main advantage of the created 

elements compared with earlier similar approach lies in usage of the diagonal mass matrix of the element. The ele-

ments are compatible with conventional finite elements, may be used in branchy non-homogenous structures, as well 

as enable to implement non-reflecting boundary conditions. The saving the computational resources is estimated. 

Keywords: wave propagation; finite elements; modal synthesis; phase velocity error. 

 

1. Introduction 

Finite element (FE) simulations of wave propaga-

tion (WP) in elastic or acoustic media are of signific-

ant importance in engineering applications, such as 

ultrasonic measurement procedures [6,14,17] pressure 

pulses propagation in large structures or pipe net-

works, etc. Computational WP models are based on 

the general structural dynamics equations and may be 

explored by applying the structural vibration analysis 

techniques. However, the very nature of real WP 

problems may raise specific challenges despite the 

illusory simplicity of the models, which in many cases 

can be based on small strain and linear material beha-

vior assumptions. Here we concentrate on the multi-

scale problem, where the simulated wavelengths are 

many times smaller than the dimensions of the body, 

in which the WP is investigated. Simulations of practi-

cal value require the models of huge dimensionality. 

As direct multi-scale approaches cannot be applied in 

short WP problems, only the roughness of the mesh 

determines the dimensionality of the computational 

model. It is known that the conventional first-order 

finite elements require ~20-30 space steps per shortest 

simulated wavelength in order to obtain adequate 

simulation results, and smallest 2D problems of any 

practical value require to use 106 − 107  elements. 

Rougher meshes tend to increase the simulation errors, 

which exhibit themselves as severe deterioration of the 

shapes of propagating wave pulses as the time of 

simulation increases. This happens due to the errors of 

representation of wave propagation velocities of 

different harmonic components of the propagating 

pulse. The magnitude of the error depends on the 

number of elements per wavelength. The relationship 

of the wave velocity against the wave frequency or 

against the wavelength is referred to as the dispersion 

curve, therefore the errors under consideration are 

often referred to as numerical dispersion errors (NDE) 

or phase velocity errors. 

The complete elimination of ND errors is possible 

by applying semi-analytical FE approach to WP 

problems [3]. However, this works only for WP along 

uniform cross-sectional shape waveguides and is not 

applicable for general 2D or 3D problems, as well as 

in the case of varying along the waveguide cross-

section in 1D. The approaches based on structural dy-

namic models are based on the higher order FE, which 

could ensure the accuracy of simulation results within 

acceptable limits. In [18], it was demonstrated that the 

positions of the higher-order finite element nodes are 

of great importance, where equidistant, Lobatto and 

Chebyshev node distributions were investigated. In [7] 

the general template was proposed for retrieving 

characteristic matrices of n-node bar elements, based 

on their reduced diagonal representations. In [9] B-

spline modification of FEM has been investigated by 

using complex wavenumber Fourier analysis, where 

NDE were minimized. In [12] the technique for the 

elimination of transient wave reflections from the 



Highly Convergent Finite Elements with Diagonal Mass Matrix for Short Wave Pulse Propagation Simulation 

309 

boundaries of small sub-models was used in order to 

assemble a large structure in a computationally 

efficient manner. In [8] the advantages of FE and 

spectral methods were combined in the case of 1D 

linear problem. In [5] the research was extended for 

2D problems. In [4] B-spline wavelet on interval finite 

element has been applied for the analysis of elastic 

wave propagation in 1D structure. In [16] NDE were 

minimized by sub-gridding finite difference scheme 

for solving the Helmholtz equation with perfectly 

matched layer in the two dimensional domain. In [11] 

NDE analysis for FE models in time domain was 

performed. The optimum time step has been found, 

which minimizes the phase error introduced by the 

nonlinear dispersion relation.  

The approach presented in this work is based on 

synthesized finite elements (SE) as in our earlier 

research [1]. SE were synthesized on the base of 

appropriately modified modal frequencies (MF) and 

modal shapes (MS) of the component substructures 

assembled of conventional linear finite elements 

(CFE). The way and extent of modification of MF and 

MS was established by solving the optimization 

problem, where the modal errors of the component 

substructure were minimized. It was demonstrated that 

the percentage of close to accurate structural modes 

was preserved as large structures were assembled of 

SE. In case the model assembled of SE contained 

about 80% of the modes the errors of which did not 

exceed 2%, the mesh containing only 6-10 elements 

per wavelength could be used, and the propagating 

wave pulse retained its original shape over large 

propagation distances. The approach originally 

demonstrated on 1D WP models was later extended to 

2D [2]. The main drawback of the SE approach was 

that the mass matrices were non-diagonal and unable 

to fully exploit the advantages of explicit time 

integration schemes. An essential point of this work is 

the modified algorithm for obtaining SE, where only 

the stiffness matrix is synthesized while the mass 

matrix remains diagonal. SE exhibit similar 

convergence properties in branched 1D structures, as 

well as can be combined with CFE in order to 

implement the non-reflecting boundary conditions.  

2. Synthesis of the finite element 

The finite element model of wave propagation in 

elastic bodies can be presented in the form of the 

general structural dynamic equation system  

[M]{Ü} + [C]{U̇} + [K]{U} = {F(t)} (1) 

where [M] , [C]  and [K]  are mass, damping and 

stiffness matrices, {U} is the nodal displacement 

vector and {F(t)} is the excitation force vector. 

In the case of small damping, the influence of the 

damping matrix on the eigenvalues and eigenvectors 

of the model is also small, therefore we assume [C] =
[𝟎] while the element matrices are calculated. Further 

small damping can be presented in the proportional 

form[C] = 𝑎[M] + β[K], where 𝑎, β are coefficients.  

Modal frequencies (MF) and modal shapes (MS) 

of the structure are obtained by solving the eigenvalue 

problem as 

([K] − ω2[M]){y} = {0} (2) 

where ω – modal frequency, {y} – modal shape.  

Real symmetric structural matrices [M]  and [K] 
ensure the solutions of (2) as 𝑛  structural modes 

𝜔𝑖 , {𝑦𝑖}, 𝑖 = 1, … , 𝑛 . The fundamental properties of 

structural modes provide that matrices [M]  and [K] 
can be expressed in terms of normalized MS and MF 

as 

[M] = ([Y]T)−1[Y]−1 (3.1) 

[K] = ([Y]T)−1[diag(𝜔1
2, ω2

2, … , ωn
2)][Y]−1 (3.2) 

where [Y] = [{𝑦1}, {𝑦2}, … , {𝑦𝑛}, ] is the matrix of MS. 

This means that the matrices of an element or of 

the structure can be generated by directly referring to 

the known or desired values of MF and MS. In case 

we know the first exact MF and MS of the 

investigated domain, the NDE of the structural model 

created as (3) equals zero for all wave frequencies 

within the range of the employed MF. However, in 

most cases it is hardly possible to calculate the 

necessary number of modes of the whole domain, 

therefore such an approach is of poor practical value. 

The approach regains the practical value in case the 

matrices of the computational domain are assembled 

of the matrices of subdomains, which are synthesized 

by using the appropriate MF and MS. Such 

subdomains are referred to as synthesized finite 

elements (SE). 

The outline of the synthesis procedure is presented 

in Fig. 1. The computational domain is divided into 

component substructures (CS) of simple geometry of 

�̃� d.o.f. each. The external geometrical shape of the 

CS is the same as of the SE we are going to create. 

However, the number of d.o.f. of the SE must be much 

smaller, 𝑁 ≪ �̃�. The high mesh refinement of the CS 

is necessary for ensuring the high accuracy of its first 

n modes in case the CS is treated as a stand-alone 

structure. The matrices of SE are computed by means 

of relation (3), where the first n close-to-exact modes 

obtained from the highly refined CS model are used. 

As (3) is applied, the MS available in highly refined 

mesh of the CS are mapped upon much rougher mesh 

of the SE in a proper manner. It is worth to mention 

that, for simple geometries of CS, the necessary 

number of its exact modes sometimes can be obtained 

analytically.  

The SE obtained in this way is referred to as the 

initial approximation element (IAE). By using IAEs, a 

model of any required geometry could be assembled. 

Unfortunately, the errors of models assembled of 

close-to-exact IAEs are significant. Therefore we enter 

the optimization loop, where the MS used for the 

synthesis of SE are treated as optimization parameters. 

The MS are slightly modified during each 
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Figure 1. Outline of the SE generation procedure

optimization loop in order to ensure that a certain 

reference structure, or sample domain (SD) assembled 

of a certain number of SEs provides as many as 

possible close-to-exact modes. At the first sight, we 

could suspect that the result is dependent on the 

selected size and shape of the SD, which we may 

select freely. Fortunately, we found that the 

dependence of the result on the number of SEs used in 

the SD is not significant. E.g. in 1D case we may 

intend to synthesize a 10-noded SE. For obtaining the 

proper modification of the modal shapes, the 

optimization problem is solved, where 91-noded SD 

assembled of 10 such SEs is used as a reference 

structure. We must know the close-to-exact modal 

shapes of the SD, however this can be calculated once 

by using a very dense mesh or sometimes can be 

obtained analytically. Anyway, the number of d.o.f. N 

of the SD may be selected much smaller than the 

number of d.o.f. of the real computational domain of 

practical value. 

The optimization loop in Fig. 1 is used for the 

minimization of the target function, which presents the 

cumulative error of modal frequencies of the SD as  

min
[ay]

Ψ = ∑ (
ω̂i−ωi0

ωi0
)

2
Ñ
i=1  (4) 

where ω𝑖 are the MFs of the SD assembled of SE, ω𝑖0 

are close-to-exact MFs of the SD, and [ay]  is the 

matrix of MS correction coefficients treated as 

optimization variables. The summation of errors is 

performed over Ñ ≤ 𝑁 modal frequencies of the SD. 

The correction of MS is performed as 

[{�̃�11, … , �̃�1𝑛}, … , {�̃�𝑛1, … , �̃�𝑛𝑛}] = [{𝑦11 ∗

𝑎11
𝑦

, … , 𝑦1𝑛 ∗ 𝑎1𝑛
𝑦

}, … , {𝑦𝑛1 ∗ 𝑎𝑛1
𝑦

, … , 𝑦𝑛𝑛 ∗ 𝑎𝑛𝑛
𝑦

}] (5) 

where each j-th term of i-th MS is multiplied by the 

corresponding value taken from matrix [ay] . 

Corrections of all MSs are performed with exception 

of the rigid-body modal shapes, which correspond to 

zero modal frequencies.  

Minimization of the target function (4) is 

performed by using the gradient descent method. The 

gradient 
𝛿𝛹

𝛿[ay]
 is expressed as 

𝛿Ψ = ∑
ω̂i−ω̂i0

ω̂i0ω̂i

N
i=1 𝛿ω̂i

2
 (6) 

𝛿ω̂i
2 = {�̃�i}

T (
∂[K̂]

∂α
− ω̂i

2 ∂[M̂]

∂α
) {�̃�i}. (7) 

As we do not change mass matrix in order to 

preserve its diagonal form, 
𝜕[�̂�]

𝜕𝛼
= 0 is assumed. From 

equations (6) and (7), the gradient 
𝛿Ψ

𝛿a
ij
𝑦 is expressed as 

𝛿Ψ

𝛿a
ij
𝑦 = ∑ ∑

ω̂i−ω̂i0

ω̂i0ω̂i

𝑁
𝑗=1

N
i=1 {�̃�i}

T (
∂[K̂]

∂a
ij
𝑦 ) {�̃�i} (8) 

where [K̂] is assembled in each optimization step of 

the SE matrices obtained at previous optimization 

step.  

The derivative 
∂[K̂]

∂a
ij
𝑦  is expressed as  

∂[K̂]

∂a
ij
𝑦 =

 − ({a𝑦}T[Ỹ]
T

)
−1

([0, … ,0, yij, 0, … ,0][K̂][Ỹ]{a𝑦} +

{a𝑦}T[Ỹ]
T

[K̂][0, … ,0, yij, 0, … ,0]) ({a𝑦}[Ỹ])
−1

 (9) 

where [Ỹ] is mode shape of sample model, assembled 

of SE, 𝑦𝑖𝑗 is the j-th value of the i-th mode shape. 
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3. Numerical investigation with application to 

1D waveguides 

As a numerical example, the analysis of WP in a 

1D waveguide is performed. A reference model is 

assembled of the first order 1D finite elements as 

[𝑀𝑒] =  
𝜌𝐴𝐿

2
[
1 0
0 1

] (10.1) 

[𝐾𝑒] =  
𝐸𝐴

𝐿
[

1 −1
−1 1

] (10.2) 

where 𝐴  and 𝐿  – length and respectively cross-

sectional area of the element, 𝐸  is stiffness modulus 

and 𝜌 is mass density. In 1D case, exact MF and MS 

of any straight 1D waveguide can be obtained 

analytically as 

ωi0 = 𝜋(𝑖 − 1)/𝑙√𝐸/𝜌 (11.1) 

yi0j = sin (
2∗𝑝𝑖∗(𝑖−1)

𝑙/(𝑗∗𝐿)
) (11.2) 

where 𝑖  is the mode number, j is number of the 

component of the i-th MS vector, 𝑙 is the length of the 

waveguide. The dimensionless results are obtained by 

assuming 𝐴 = 1 , 𝐸 = 1 and 𝜌 = 1. The exact value of 

the speed of wave is 𝑐 = √𝐸/𝜌 = 1.  

3.1. Obtaining the initial approximation elements 

In this numerical experiment IAE, is obtained by 

substituting (11.1) into (3), while the MS are mapped 

on the nodes of 10-noded SE. The filling of the mass 

matrix obtained by (3.1) by non-zero numbers is 

presented in Fig. 2a, and MF errors of the SD 

assembled of 10 IAE is presented in Fig. 2b. The error 

of each MF is presented as computed by 
ω̂i−ωi0

ωi0
. As the 

obtained IAE mass matrix is transformed to the 

diagonal form, the corresponding correction of the 

stiffness matrix is performed as 

[K] = [M][Y][diag(ω1, ω2, … , ωn)][Y]T[M]. (12) 

The diagonalization of the mass matrix does not 

significantly change the MF of the SD (Fig. 2c,d), 

therefore further in this work we always use the 

diagonal form. However, the obtained IAE introduces 

much bigger MF errors than could be acceptable. 

3.2. Minimization of modal frequency errors 

The stiffness matrix of SE is obtained by 

minimizing target function (4) as described in Section 

2. After minimization of the target function, the MF 

errors of the SD are presented in Fig. 3. The presented 

results correspond to different numbers Ñ of MF, the 

cumulative error of which has been minimized: a) Ñ =
91 (100%), b) Ñ = 63 (~70%), c) Ñ = 54 (~60%), 

d) Ñ = 45 (~50%). Further in this paper the obtained 

SE are referred to as SE100, SE70, SE60, SE50. 

The obtained results in Fig. 3 should be compared 

against the MF error curve in Fig. 2d. The distribution 

of MF errors among the modes severely depends on 

the number of modes the cumulative error of which 

has been taken into account. In case the cumulative 

error minimization is performed over all MFs, Ñ = N, 

the result is rather poor, Fig. 3a. However, by 

selecting smaller values of Ñ, we may achieve very 

small values of the cumulative error in this modal 

range. Probably the best result was obtained as Ñ
 

 

a) 

 

c) 

 

b) 

 

d) 

Figure 2. a) Mass matrix filling of the model assembled of 10 IAE 10 nodes each; b) MF errors of the model of 10 IAE;  

c) The filling of the diagonal mass matrix; d) MF errors of the model with diagonal mass matrix 
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a) 

 

c) 

 

b) 

 

d) 

Figure 3. Modal frequency errors of the sample domain assembled of 10 synthesized elements at different numbers of modal 

frequencies contributing to the cumulative error: a) 100 % (SE100); b) 70% (SE70); c) 60% (SE60); d) 50% (SE50) 

 

a) 

 

d) 

 

g) 

 

b) 

 

e) 

 

h) 

 

c) 

 

f) 

 

i) 

Figure 4. Modified modal shapes of several modes participating in the synthesis of SE60: exact(red smooth line), obtained by 

direct mapping on the SE (black broken line) , modified by optimization for the synthesis of SE60 (dashed line) 
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a) 

 

b) 

 

c) 

Figure 5. Errors of MF of models assembled of SE (red) and CFE (black), at different numbers of nodes  

in the waveguide model: a) N=10; b) N=361; c) N=721 

 

Figure 6. Graphical interpretation of simulation quality indicators 𝒂𝒏, 𝒂𝒍 and 𝒂𝒎 

comprised 60% of lower MF, where the final target 

function value read as ∑ (
ω̂i−ωi0

ωi0
)

2
Ñ
i=1 ≈ 10−5 . The 

modal errors of the higher 40% modes are quite 

significant, however, further we demonstrate that the 

overall performance of the model in WP simulations is 

much better compared against the model of IAEs, and 

essentially better than could be achieved by using the 

CFE at the same number of d.o.f., see the red curve of 

the MF errors in Fig. 3d.  

It is important to understand what particular 

modifications defined by coefficients [ay] undergo the 

MS mapped on the nodes of the SE in order to achieve 

the enhanced convergence properties. The modified 

modal shapes are presented in Fig. 4, where 

modification of the first MS was small, while some 

higher order MS underwent significant modifications 

in order to achieve the best cumulative performance.  

The values of the obtained modal shape correction 

coefficients, as well as the mass and stiffness matrices 

of 1D 10-node SE are presented in Appendices 1 

and 2.  

A very important property of the investigated 

models is that the percentage of close-to-exact modes 

SE does not depend on the overall d.o.f. number of the 

investigated domain. Approximately, the frequency 

value of the higher limit of the range of close-to-exact 

MFs is the same for the stand-alone SE, as well as for 

the large computational domain assembled of such SE. 

Therefore the highest close-to-exact modal frequency 

value of the SE defines the width of wave spectrum, 

which could be simulated with very small phase 

velocity errors in waveguide models. Fig. 5 presents 

the MF errors of the models of different sizes 

assembled by using different numbers of nodes as a) 

N = 10; b) N = 361; c) N = 721. This means that the 

obtained SE can be used for waveguide structures of 

different sizes and can be treated as dynamic fast 

convergent super-element with diagonal mass matrix. 

3.3. Simulation of wave pulse propagation 

Let us consider the wave pulse is excited at the 

left-hand end of the 1D waveguide structure and pro-

pagates along it. Theoretically, the pulse should move 

along the structure at the speed of sound, without 

changing its form. In order to evaluate the extent of 

deterioration of the pulse shape due to ND errors the 

following simulation quality indicators are used: wave 

amplitude  𝑎𝑚 at the peak of wave; maximum value of 

numerical noise (NN) 𝑎𝑛 and the width 𝑎𝑙 of the pulse 

at its height 
√2

2
∗ 𝑎𝑚 (Fig. 6). In the case of the exact 

solution we have 𝑎𝑛 = 0, 𝑎𝑚 = 1. 

Assume the straight 1D structure is assembled of 

20 SE, where length of each element 𝑙𝑒 = 0.1 , the 

total length of the structure 𝑙 = 2, the total number  

of nodes 𝑁 = 181 , the distance between adjacent 

nodes 𝐿 =
𝑙𝑒

10−1
≈ 0,011 . The dimensionless wave 

speed is c= 1. Simulation is performed during time 
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period 𝑇 = 7 (𝑠) , while the distance traveled by the 

pulse is 𝑆 = 7 . The obtained results are compared 

against the results obtained in the CFE model of the 

same dimensionality and against the results obtained 

in a very dense (90 nodes per wavelength) CFE mesh. 

The latter has been regarded as the close-to-exact 

solution. The wave simulation is performed by 

actuating the displacement at the left-hand end of the 

waveguide as 

𝑢(𝑡) = {
(1 − cos(

𝜋

𝑑𝑒𝑙𝑡𝑎𝑇
𝑡)) ∗ 𝑑𝑒𝑙𝑡𝑎𝑈, 𝑡 < 𝑑𝑒𝑙𝑡𝑎𝑇

0, 𝑡 ≥ 𝑑𝑒𝑙𝑡𝑎𝑇
 (13) 

where 𝑑𝑒𝑙𝑡𝑎𝑇  is the actuation time, 𝑑𝑒𝑙𝑡𝑎𝑈  is the 

wave amplitude. The dimensionless results are 

obtained by assuming 𝑑𝑒𝑙𝑡𝑎𝑈 = 1. The comparison of 

the results at different space-steps of the model is 

presented in Fig. 7, where propagation distance is 

expressed in terms of the length of the wave pulse. 

It can be observed that in all cases the accuracy of 

the model assembled of SE is the best with errors less 

than 10% errors compared against the models of 

conventional elements. Even 6 nodes per pulse-length 

in the model assembled of SE produce reasonable 

simulation results, which are impossible to achieve by 

using conventional elements at the same mesh density, 

Fig. 7d. The attention should be drawn to the small 

distortion of the pulse shape at the peak of the pulse as 

SE with dense mesh (36 nodes per wavelength) were 

used, Fig. 7a. Apparently, it is a consequence of the 

lower MS correction, which is performed as the 

element is synthesized. This imperfection exhibits 

itself at the moment of excitation of the pulse as the 

mesh is dense. However, the distortion disappears in 

case a combined model assembled of conventional FE 

and SE is employed (Fig. 8). The explanation is as 

follows. Both conventional FE and SE meshes ensure 

the close-to exact MF values, therefore the 

propagation speed of all harmonic components of the 

pulse is represented correctly. The representation of 

the pulse shape depends on MS which are a little 

distorted in SE. As the pulse comes back to the 

segment presented by CFE, the distortion of the pulse 

shape disappears. Practically this distortion is very 

small, because the corrections of lower MS of the SE 

are small (Fig. 4). 

The B-scan image of the wave pulse propagation is 

presented in Fig. 9, where horizontal and vertical axes 

correspond to the time and to the displacements along 

 

 

a) 

 

c) 

 
 

 

b) 

 

d) 

Figure 7. Simulation results after 7 (s): a) 𝐝𝐞𝐥𝐭𝐚𝐓 = 𝟎. 𝟒, 36 nodes per wavelength, pulse propagated 17.5 wavelengths;  

b) 𝐝𝐞𝐥𝐭𝐚𝐓 = 𝟎. 𝟐, 18 nodes per wavelength, pulse propagated 35 wavelengths; c) 𝐝𝐞𝐥𝐭𝐚𝐓 = 𝟎. 𝟏, 9 nodes per wavelength,  

pulse propagated 70 wavelengths; d) 𝐝𝐞𝐥𝐭𝐚𝐓 = 𝟎. 𝟎𝟕, ≈6 nodes per wavelength, pulse propagated 100 wavelengths 
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Figure 8. Wave propagation in the combined model assembled of SE60 and STE 

 

a) 

 

b) 

Figure 9. B-scan image with nonlinear color bar of wave simulation in model of a) CFE; b) combined model of CFE and SE60 

the waveguide. The intensities of grey-scale represent 

the magnitude of displacements. In general, NN in the 

simulation is very small (up to 3% of the amplitude of 

the pulse), therefore we used the non-linear scale of 

the color bar. The main difference between the NN 

generated in both models is that CFE produces errors 

as a fictitious wave pulses, which are difficult to 

visually distinguish as the error. Meanwhile in the SE 

model, the small amplitude NN is distributed over all 

the structure and its interpretation as the error is much 

easier. 

3.4. Branchy structures containing non-reflecting 

boundary conditions  

In this section, the wave-pulse propagation in 

branchy non-homogenous model assembled of SE will 

be investigated. A sample model contains 3 waveguide 

segments of different properties. The diameters of 

circular cross-sections are D1 = 0.1 , D2 = 0.08  and 

D3 = 0.05 , mass densities 𝜌1 = 0.8 , 𝜌2 = 1.2 , 𝜌3 =

1, bulk moduli and lengths are K1,2,3 = 1 and L1,2,3 =
1 . Depending on mass densities, the speeds of the 

wave are 𝐶1 ≈ 1.12 , 𝐶2 ≈ 0.91 , 𝐶3 = 1 . The 

geometry of the investigated domain is presented in 

Fig. 10a. 

Simulation starts by actuating the wave pulse as 

(13) at the left-hand end of segment 1, where 

deltaT = 0.1 (𝑠) , deltaU = 1  (Fig. 10a, stage 1). 

After ~1 (𝑠) the wave-pulse reaches the branching, is 

partially reflected back and partially continues through 

segments 2 and 3 (Fig. 10a, stage 2). After ~2 (s) the 

pulse is reflected from the end of segment 2 and 

comes back, while at the end of segment 3 the non-

reflecting boundary condition [15] is implemented 

(Fig. 10a, stage 3) as  

√
𝐾

𝜌

𝛿𝑢

𝛿𝑥
+

𝛿𝑢

𝛿𝑡
= 0. (14) 

For comparison of the performance, two models 

were created. The model assembled of SE contained 
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a) 
 

b) 

Figure 10. a) Geometry of branched non-homogenous structure b) Simulation results after 𝟐. 𝟓𝟓 (𝒔)  

Table 1 Characteristic values of wave-pulse simulation in the branched non-homogenous structure 

Waveguide 
type 

Model element type Nodes per wavelength 𝒂𝒎 𝒂𝒏 𝒂𝒍 

TYPE1 
SE60 8.3 0.480 0.038 0.042 

STE 82.2 0.481 0.010 0.041 

TYPE2 
SE60 10.2 1.484 0.039 0.037 

STE 100.6 1.484 0.037 0.034 

TYPE3 
SE60 9 - 0.038 - 

STE 90 - 0.012 - 

 

 

a) 

 

b) 

Figure 11. a) The shape of the wave pulse; b) Fourier spectrum of the wave pulse 

~9 elements per pulse-length, and the model 

assembled of CFE contained ~90 nodes per pulse-

length (close-to-exact solution). The exact number of 

nodes per pulse-length depends on the mechanical 

properties of a particular segment (Table 1). As in 

[12], the non-reflecting boundary condition cannot be 

implemented in SE directly. Therefore, at the end of 

segment 3, a short CFE was joined in which the non-

reflecting boundary condition can be adequately 

implemented [10]. Simulation results after 2.55 (s) (at 

the end of stage 3 in Fig. 10a) are presented in Fig. 

10b. It can be concluded that only negligible 

discrepancies compared against the reference model 

could be observed, though the SE60-based model was 

employed in a quite general and combined situation. 

The discrepancy between the two models could be 

estimated as 0.04 relative level numerical noise, which 

was observed in the SE60-based model. Exact values 

of the simulation quality indicators  𝑎𝑚 ,  𝑎𝑛 , 𝑎𝑙  are 

presented in Table 1.  

3.5. Dependencies of results on the frequency 

spectrum of the propagating wave 

We investigate the influence of the number of 

nodes per pulse length on the accuracy of results of 

wave simulation, where the models are assembled of 
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a) 

 

b) 

Figure 12. Comparison of the 𝒆𝛚 values of the SE60 and CFE models assembled against their number of nodes (a)  

and Comparison of the shapes of the simulated wave pulse in the SE60 and CFE models at node numbers  

𝑵𝑺𝑬𝟔𝟎 = 𝟏𝟐𝟕 and 𝑵𝑪𝑭𝑬 = 𝟔𝟎𝟎 (equal values of 𝒆𝛚 in both models) (b) 

 

a) 

 

b) 

Figure 13. Comparison of the B-scan images of the simulated wave pulse in the SE60 and CFE models at node numbers 

𝑵𝑺𝑬𝟔𝟎 = 𝟏𝟐𝟕 and 𝑵𝑪𝑭𝑬 = 𝟔𝟎𝟎 (equal values of 𝒆𝛚 in both models) 

SE or of CFE. Assume the wave pulse (13) is 

actuated in the waveguide of length = 2. In Fig. 11 the 

shape and Fourier spectrum of the pulse are presented, 

where impulse actuation time is 𝑑𝑒𝑙𝑡𝑎𝑇 = 0.1 (𝑠) and 

the dimensionless wave propagation speed is 𝐶 = 1 

(m/s). The width of the Fourier spectrum defines the 

frequency range, in which the modal frequencies of 

the model should be close-to-exact in order to provide 

accurate simulation results. This enables to 

approximately predict the magnitude of the error of 

the propagating wave-pulse simulation in terms of 

modal frequency errors of the finite element structure. 

In the case of 1D straight beam, the modal 

frequencies coincide with the frequencies of the 

harmonic components of the Fourier spectrum. The 

error of representation of the propagating wave pulse 

can be evaluated as  

𝑒ω = ∑ 𝑓𝑖 (
ω̂i−ω̂i0

ω̂i0
)

2
N
1  (15) 

where 𝑓𝑖 is the amplitude of the component of the i-th 

frequency of the Fourier spectrum, (
ω̂i−ω̂i0

ω̂i0
)

2

 is the 

relative error of the i-th modal frequency of the 

structure. The magnitude of 𝑒ω enables to evaluate the 

amount of the distortion of the shape of the wave 

pulse. The evaluation is obviously approximate as 

during the simulation the wave pulse spectrum slightly 

changes due to the generated NN.  

Assume that if 𝑒ω  is equal for two different 

models, their abilities to represent correctly the shape 

of the propagating wave pulse are the same. In Fig. 

12a errors 𝑒ω of models assembled of SE and of CFE 

are compared, while the number of nodes in model 

varies: 100 ≤ N ≤ 1100.  

Fig. 12a demonstrates that 𝑒ω  value of the CFE 

model is the same as 𝑒ω value of the SE model with 

more than 4.5 times rougher mesh. The performance 

of the SE model in wave pulse simulation is 

demonstrated in Fig. 12b, where very similar results 

were obtained by using the CFE model containing 

𝑁𝐶𝐹𝐸 = 600 nodes and by using ~4.7 times rougher 

SE model containing only 𝑁𝑆𝐸60 = 127 nodes. The 

obtained values of simulation quality indicators 𝑎𝑙, 𝑎𝑛 

and 𝑎𝑚 differ less than 1% between the two models. 

The same comparison in terms of the B-scan images is 

presented in Fig. 13.  
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3.6. Comparison of computational resources 

In order to obtain the matrices of SE, the 

minimization problem of target function (4) should be 

solved. Though the solution of the problem is 

computationally expensive, the obtained SE60 matrix 

can be used in any 1D structure as a general result 

(Appendix 2).  

The actual evaluation of the computational 

resource used for wave simulations includes the 

amount of memory and the number of operations, 

which should be performed during each numerical 

integration step by employing the central difference 

numerical integration scheme. The SE60 matrices are 

assumed to be known in advance. The structural 

matrices assembled of SE and CFE always are sparse 

matrices. However, the number of non-zero positions 

in the matrices of the SE model is bigger, as the 

bandwidth of SE model matrices is equal to the 

number of nodes of a single SE, while the bandwidth 

of matrices assembled of CFE is always 3. Depending 

on required accuracy and the frequency spectrum of 

the simulated signal, the numbers of nodes in both 

models of SE and of CFE are different. Assume the 

propagation of the signal described in section 3.3 is 

simulated. The number of nodes of the SE model is 

~4.7 times less than of the CFE model. Therefore 

relations between the numbers of nodes and the 

bandwidths of the stiffness matrices in the two models 

of the same accuracy read as  

𝑁𝐶𝐹𝐸 = 4.7 ∗ 𝑁𝑆𝐸 (16.1) 

𝑊𝐶𝐹𝐸 =
𝑊𝑆𝐸

5
= 2 (16.2) 

where 𝑊 is the bandwidth of the stiffness matrix. 

During the time integration the structural vectors 

{Ü} , {U̇} , {U}  and matrices [M] , [K]  require the 

memory size as 

𝑂𝑚𝑒𝑚 = (4𝑁 +
𝑁∗𝑊+2∗𝑁−𝑊

2
) ∗ 𝑏 (17) 

where for storage of each number 𝑏  bytes are 

allocated. In (17) the diagonal form of [M]  and the 

symmetry of [K] are taken into account.  

By combining (16) and (17) we may compare the 

required computer memory in SE and CFE models as 

𝑂𝑚𝑒𝑚_𝐶𝐹𝐸 ≈ 2.83 ∗ 𝑂𝑚𝑒𝑚_𝑆𝐸 , i.e. in SE models the 

employed memory size is ~65 % less than in CFE 

models.  

The evaluation of the number of operations 

necessary for the time integration in one integration 

step by using the central difference scheme is 

evaluated as  

𝑂𝑠𝑡 = 5𝑁 ∗ 𝑊 − 3𝑊. (19) 

By inserting values (17) into (19) we obtain 

𝑂𝑠𝑡_𝐶𝐹𝐸 ≈ 1.44 ∗ 𝑂𝑠𝑡_𝑆𝐸 . This means that SE models 

require ~30% less arithmetic operations. Practically, 

computational time depends on machine architecture, 

operating system, arithmetic operation type, etc. In 

order to investigate usage of computational resources, 

numerical experiment of ultrasonic longitudinal wave 

propagation [13] in 1D aluminum waveguide is 

performed, where computational times are compared 

for models assembled of CE and SE60 with 4.7 

rougher mesh (30 nodes per wavelength in model of 

CE and 6.36 in model of SE, respectively). Simulation 

is performed while pulse propagates whole 

waveguide, so total time of simulation increases by 

increasing length of the waveguide. Experiment is 

performed using Matlab R2015a with sparse mass and 

stiffness matrices on machine with Intel Core i7-4790 

CPU @ 3.60 Hz processor, 32GB RAM and 64-bit 

Windows Operating System. Physical constants of 

waveguide of FE model of equation (10) are 𝐸 =
71.788 MPa, 𝜌 = 2780 kg/m3, wave speed 5081 m/
s , pulse actuation time 40 μs  and integration step 

0.4 μs. Results on how the total number of simulation 

steps and computational time depend on waveguide 

length are adduced in Table 2.  

Results in Table 2 show that betterment of compu-

tational time obtained by performing simulation is 

better compared with results obtained by calculating 

arithmetical operations. Additional advantage of the 

SE models is bigger value of the limit time step ensu-

ring the stability of the numerical integration scheme.  

4. Conclusion 

The main result of this work is that the method 

based on modal synthesis allowed to develop the dy-

namic super-elements, the convergence properties of 

which are much better if compared against conven-

tional finite elements. Better convergence properties 

allow much rougher meshes for simulations of short 

waves propagation in large structures while retaining 

similar accuracy. Another point is that the of short
 

Table 2. Comparison of computational times using FE models assembled of CE and SE60 

Waveguide 
length (m) 

Simulation 
time (ms) 

 

Total 
simulation 

steps 

Model of CE Model of SE60 Betterment 
(%) 

Nodes Computational 
time (s) 

Nodes Computational time 
(s) 

10 1.97 4920 1476 0.158 316 0.083 47 

20 3.94 9839 2952 0.551 622 0.305 45 

50 9.84 24598 7380 3.366 1567 1.571 53 

100 19.68 49197 14759 13.607 3124 6.907 49 

200 39.58 98394 29518 56.966 6256 23.982 58 
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waves propagation in large structures while retaining 

similar accuracy. Another point is that the numerical 

errors generated by new elements tend to be distri-

buted equally over the domain behind the travelling 

wave pulse. On the contrary, the numerical errors 

generated by conventional elements often resemble 

one or several wave pulses of considerable amplitude, 

which follow the main wave and sometimes can be 

misinterpreted by regarding them as real rather than 

fictitious. Though the principle was demonstrated 

already in our previous researches, the mass matrices 

of synthesized elements obtained in this work are 

diagonal and therefore may be fully functional in 

explicit time integration schemes. The synthesized 

elements can be treated as higher-order finite ele-

ments, though the synthesis procedure did not require 

explicit determination of higher order shape functions. 

It is important that the synthesized elements may be 

used in combination with conventional elements and 

in branchy non-homogenous structures, as well as 

enable to implement non-reflecting boundary condi-

tions, which are important in many engineering appli-

cations. Here we demonstrated the full functionality of 

the created elements in 1D case, however, the 

synthesis procedure is essentially the same in 2D and 

3D cases. This research is under way now. 

Acknowledgment 

The research has been sponsored by the Lithuanian 

Science Council, Agreement Number MIP-044/2014. 

References 

[1] R. Barauskas, R. Barauskiene. Highly Convergent 

Dynamic Models Obtained by Modal Synthesis with 

Application to Short Wave Pulse Propagation. 

International Journal for Numerical Methods in 

Engineering, 2004, Vol.61, No.14, 2536–2554. 

[2] R. Barauskas. On Highly Convergent 2D Acoustic 

and Elastic Wave Propagation Models. 

Communications in Numerical Methods in 

Engineering, 2005, Vol.22, No.3, 225–233. 

[3] I. Bartoli, A. Marzani, F. L. Scalea, E. Viola. 
Modeling Wave Propagation in Damped Waveguides 

of Arbitrary Cross-Section. Journal of Sound and 

Vibration, 2006, Vol.295, No.3, 685-707. 

[4] X. Chen, Z. Yang, X. Zhang, Z. He. Modeling of 

wave propagation in one-dimension structures using B-

spline wavelet on interval finite element. Finite 

Elements in Analysis and Design 2012, Vol.51, 1-9. 

[5] H. Seounghyun, K. Bathe. A finite element method 

enriched for wave propagation problems. Computers & 

Structures, 2012, Vol.94, 1-12. 

[6] R. Hill, S. A. Forsyth, P. Macey. Finite element 

modelling of ultrasound, with reference to transducers 

and AE waves. Ultrasonics, 2004, Vol.42, No.1, 253-

258.  

[7] R. Khajavi. General templates for n-noded bar 

elements based on reduced representations and 

numerical dispersion reduction by optimized finite 

elements. Applied Mathematics and Computation, 

2014, Vol.233, 445-462. 

[8] H. Kohno, K. Bathe, J. C. Wright. A finite element 

procedure for multiscale wave equations with 

application to plasma waves. Computers & Structures, 

2010, Vol.88, No.1, 87-94.  

[9] R. Kolman, J. Plešek, M. Okrouhlík. Complex 

wavenumber Fourier analysis of the B-spline based 

finite element method. Wave Motion, 2014, Vol.51, 

No.2, 348-359.  

[10] A. Krisciunas, R. Barauskas. Minimization of 

Numerical Dispersion Errors in Finite Element Models 

of Non-homogeneous Waveguides. Information and 

Software Technologies, 2013, Vol.403, 357-364.  

[11] A. Monorchio, E. Martini, G. Manara, G. Pelosi. A 

dispersion analysis for the finite-element method in 

time domain with triangular edge elements. IEEE 

Antennas and Wireless Propagation Letters, 2005, 

Vol.1, No.1, 207-210. 

[12] T. Oha, J. S. Popovicsa, S. Hama, S. W. Shinb. 
Practical finite element based simulations of 

nondestructive evaluation methods for concrete. 

Computers & Structures, 2012, Vol.98, 55-65. 

[13] J. Prikšaitis, L. Mažeika, R. Barauskas, E. 

Žukauskas, A. Kriščiūnas. Influence of the 

Numerical Dispersion Effects in the Modelling of 

Ultrasonic Measurements. Physics Procedia, 2015, 

Vol. 70, 532-536. 

[14] Y. Shen, S. Hirose, Y. Yamaguchi. Dispersion of 

ultrasonic surface waves in a steel–epoxy–concrete 

bonding layered medium based on analytical, 

experimental, and numerical study. Case Studies in 

Nondestructive Testing and Evaluation, 2014, Vol.2, 

49-63. 

[15] J. P. Wolf, C. Song. Finite-element modelling of 

unbounded media. Chichester Wiley, 1996.  

[16] W. Tingting, Z. Chen. A dispersion minimizing 

subgridding finite difference scheme for the Helmholtz 

equation with PML. Journal of Computational and 

Applied Mathematics, 2014, Vol.267, 82-95. 

[17] B. Xu, Z. Shen, X. Ni, J. Lu. Numerical simulation of 

laser-generated ultrasound by the finite element 

method. Journal of Applied Physics, 2004, Vol.95, 

2116-2122. 

[18] A. Żak, M. Krawczuk. Certain numerical issues of 

wave propagation modelling in rods by the Spectral 

Finite Element Method. Finite Elements in Analysis 

and Design, 2011, Vol.47, No.9, 1036-1046. 

Received November 2015. 

 



A. Kriščiūnas, R. Barauskas 

320 

Appendix 1. Examples of mode shape correction coefficients.  

[a𝑦] =  

 

Appendix 2. 10-node SE60 mass and stiffness matrices 

[M𝑆𝐸60] =  
𝜌𝐴𝐿

2
∗  

 

[K𝑆𝐸60] =  
𝐸𝐴

𝐿
∗  

 

 

 1.0000    0.9990    1.0091    1.0165    1.4052    1.3402    1.0269    1.1935    1.2459    1.3579 

 1.0000    0.9799    0.9096    0.9097    0.9268    1.1102    1.1612    1.1948    1.1681    1.4522 

 1.0000    1.1247    1.0932    0.9004    0.5874    0.6974    0.8417    0.9824    0.9906    1.1330 

 1.0000    0.9766    1.1159    0.9899    1.2080    1.0209    1.0090    0.9790    1.0135    1.0048 

 1.0000    0.9700    0.9803    1.0749    1.0162    0.8932    0.9992    1.0393    0.9422    0.9953 

 1.0000    0.9842    0.9997    1.0887    1.0210    0.8816    1.0193    1.0455    0.9301    0.9953 

 1.0000    1.0228    1.1463    1.0364    1.2041    1.0253    1.0012    0.9412    1.0361    1.0043 

 1.0000    1.0725    1.0201    0.8701    0.6416    0.6948    0.8201    0.9623    0.9888    1.1189 

 1.0000    0.8731    1.0255    0.8999    0.9321    1.1111    1.2293    1.1745    1.1634    1.4718 

 1.0000    1.0064    0.9260    1.0495    1.3628    1.3492    1.1042    1.1493    1.1924    1.3689 

 

  0.0556         0         0         0         0         0         0         0         0         0 

       0    0.1111         0         0         0         0         0         0         0         0 

       0         0    0.1111         0         0         0         0         0         0         0 

       0         0         0    0.1111         0         0         0         0         0         0 

       0         0         0         0    0.1111         0         0         0         0         0 

       0         0         0         0         0    0.1111         0         0         0         0 

       0         0         0         0         0         0    0.1111         0         0         0 

       0         0         0         0         0         0         0    0.1111         0         0 

       0         0         0         0         0         0         0         0    0.1111         0 

       0         0         0         0         0         0         0         0         0    0.0556 

 9.3797   -9.5509   -1.2418    2.8376   -2.3629    0.9749    0.2604   -0.1870   -0.0050   -0.1051 

-9.5509   26.8624  -19.0860    0.4962    6.0841   -4.9360    1.6100   -1.2386   -1.4587    1.2175 

-1.2418  -19.0860   35.4778  -16.3809   -3.2694    3.1376   -1.7022    5.5551   -2.2209   -0.2693 

 2.8376    0.4962  -16.3809   26.8183  -15.3426    4.0553   -1.9451   -2.9635    2.4652   -0.0404 

-2.3629    6.0841   -3.2694  -15.3426   32.0945  -20.7370    3.9507    2.9985   -4.2881    0.8720 

 0.9749   -4.9360    3.1376    4.0553  -20.7370   32.1867  -15.3382   -2.8368    6.1346   -2.6412 

 0.2604    1.6100   -1.7022   -1.9451    3.9507  -15.3382   26.4182  -17.1129    1.5830    2.2762 

-0.1870   -1.2386    5.5551   -2.9635    2.9985   -2.8368  -17.1129   36.1063  -19.2508   -1.0703 

-0.0050   -1.4587   -2.2209    2.4652   -4.2881    6.1346    1.5830  -19.2508   26.6511   -9.6102 

-0.1051    1.2175   -0.2693   -0.0404    0.8720   -2.6412    2.2762   -1.0703   -9.6102    9.3708 


