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Abstract. Understanding software structural complexity and evolution plays an important role in controlling the 
software development and maintenance process. Recent studies have shown that the theory behind complex networks, 
especially the theory of scale-free networks, can be a useful approach to the analysis of concrete software systems. In 
this paper, class collaboration networks associated with five large Java software systems (JDK, Ant, Tomcat, Lucene 
and JavaCC) are analyzed in order to determine whether they belong to the class of scale-free networks, and examine 
their small-world characteristics. For each analyzed network, we detected (approximately) scale-free and (ultra) small-
world properties. The results indicate that general conclusions from scale-free network theory can be applied to Java 
software systems in order to understand their structural complexity and model software evolution at the structural 
(class collaboration) level. Moreover, we examine class collaboration network evolution of Ant, in order to check the 
preferential attachment hypothesis of the Barabási-Albert model. For several major Ant network transitions we con-
clude that preferential attachment can successfully model Ant evolution at the class collaboration level. Finally, we 
discuss the implications of our results on software engineering, in several aspects: identification of important clas-
ses/interfaces, software testing strategy, and efficient communication among software entities. 
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1. Introduction 

In the past decade, researchers have investigated a 
variety of real-world systems modeled as complex 
networks, which connect a number of subsystems and 
components using different types of relations. Empiri-
cal studies of existing complex networks (e.g., the 
World-Wide-Web, collaborations in science, ecologi-
cal networks, metabolic networks, power networks, 
etc.) have shown that these networks, despite repre-
senting different types of systems, share many com-
mon features such as power-law degree distribution, 
the small-world property, and high levels of clustering. 
These discoveries inspired a theory of complex 
networks which focuses on principles by which net-
worked systems form, evolve, and remain robust. Re-
cent research confirmed that networks formed from 
large software systems (class collaboration networks 
in the case of Object-Oriented /OO/ software systems) 
have a topology common to large real-world and engi-
neered networks and share the already mentioned 
features.  

A large computer program is typically divided into 
many interacting units at many levels of granularity. In 
the case of Java programs, the smaller units can be 
viewed as packages at the first level, classes and 

interfaces at the second level, and methods at the third 
level of granularity. Logical connections of classes 
and interfaces define a network that is often referred to 
as a class collaboration network (from this point on, 
we do not make the distinction between classes and 
interfaces – both will be referred to by the term 
“class”). Classes collaborate in various ways: one 
class may instantiate and use objects of another class 
(using objects of different classes as method argu-
ments or return values, and calling methods of objects 
of different classes); a class can extend the 
functionality of another class (inheritance), implement 
some interface presented in the software system, etc. 
In all cases we say that a class references another 
class. Classes can be viewed as vertices (nodes) and 
references between them as edges (links or arcs, in 
case of directional connections) in a class 
collaboration network, therefore it is natural to 
represent this kind of network as a directed graph. 

Topological measurements of complex networks 
include degree distribution, the small-world coeffi-
cient and the clustering coefficient [1]. Degree distri-
bution P(k), summarizing the connectivity of each 
node in a network, indicates the probability that a 
randomly selected node has exactly k incident edges. 
In the case of directed graphs, node degree can be in-

http://dx.doi.org/10.5755/j01.itc.40.1.192



Characteristics of Class Collaboration Networks in Large Java Software Projects 

49 

coming (number of links entering the node), or out-
going (number of links exiting the node), thus there 
are two types of degree distributions: in-degree and 
out-degree. While the degree distribution of a random 
graph (a graph generated by the Erdős and Rényi /ER/ 
model) is binomial (Poisson in the limit), degree dis-
tributions of large real-world networks follow power-
law P(k) ~ k –γ characteristics [1]. This means that 
small values of node degree are very common, 
whereas large values are extremely rare. All networks 
having this type of distribution are referred to as 
scale-free. Albert and Barabási [1] proposed a one-
parameter model for generating scale-free networks 
with γ = 3, known as the Barabási-Albert (BA) model. 
The main properties of this model are network growth 
(in each iteration one new node is attached to the 
network), and the rule of preferential attachment (a 
node with higher degree has higher probability to re-
ceive an incoming link from a node that is being at-
tached to the network than a node with lower degree). 

Having the small-world property means that the 
average distance between two randomly chosen nodes 
in the network is a small value, much smaller than the 
number of nodes in the network. The distance between 
two nodes is defined as the number of edges along the 
shortest path connecting them [1]. The small-world 
coefficient l, a numerical value that reflects the small-
world property of a network, is calculated as the 
average value of small-world coefficients of each 
node. The small-world coefficient for a node is the 
average value of the distance between the selected 
node and all others directly or indirectly connected to 
it. Many studies showed that the small-world coeffi-
cient of large real-world networks scales proportio-
nally to the natural logarithm of the number of nodes. 
Networks with l ~ ln(ln(N)), where N is the number of 
nodes, are called “ultra small-worlds” [4]. 

Clustering is a significant characteristic of small-
world networks. The inherent tendency to cluster, i.e. 
the tendency of the neighbors of a node to be neigh-
bors themselves, is quantified by the clustering coeffi-
cient. The clustering coefficient is usually computed 
for undirected graphs, while for networks that have 
directed links directionality is ignored [12]. The 
clustering coefficient for node i having ki edges which 
connect to ki other nodes is the ratio between the 
number of edges that exist between these ki nodes and 
the number of edges in the complete graph that con-
sists of ki nodes, which is ki (ki – 1)/2. The clustering 
coefficient of the whole network is the average clus-
tering coefficient of all nodes. In most real-world net-
works that were analyzed, the clustering coefficient is 
typically much larger than in a comparable random 
network (which has the same number of nodes and 
edges as the real-world network) [1]. 

1.1. Motivation and Contributions 

There exist many studies that focus on questions 
relating to how software should be written and 

structured. However, comparatively few studies exa-
mine the internal structure of concrete, widely used, 
software systems. A representative selection of these 
works, which view software systems as complex net-
works, is reviewed in Section 2 of this paper. 

The initial motivation for this study was to verify 
the results by Valverde and Solé [18], who showed 
that the class collaboration network of the Java De-
velopment Kit (JDK) has scale-free and small-world 
properties. In order to achieve the first step of extrac-
ting the class collaboration network from JDK, we de-
veloped a Java software utility that is able to extract 
class collaboration networks from arbitrary Java soft-
ware based on source code analysis. This software uti-
lity is described in Section 3. 

Next, we computed basic statistical properties of 
the JDK class collaboration network (gamma expo-
nents of in/out degree distributions, small-world and 
clustering coefficient) and compared with those 
reported by Valverde and Solé [18]. However, we 
extended our research to class collaboration networks 
associated with several other widely used Java soft-
ware systems, and analyzed four more class collabora-
tion networks (networks extracted from Ant, Tomcat, 
Lucene and JavaCC) in order to determine whether 
they belong to the class of scale-free networks. For 
each network we detected scale-free or approximately 
scale-free properties. Small-world and clustering coef-
ficients of these networks were computed and com-
pared with small-world and clustering coefficients of 
random graphs of the same size. Moreover, for Tomcat 
and JavaCC networks we detected the ultra small-
world property. In addition, we extracted class colla-
boration networks from ten successive version of one 
Java software project (Ant from version 1.5.2 to 
version 1.7.0) and compared them in order to analyze 
Ant class collaboration network evolution. Section 4 
describes these experiments and their results in more 
detail. 

In Section 5 we discuss the implications of the re-
sults of our experiments on software engineering. We 
analyze several theoretical and practical merits of the 
scale-free properties of networks extracted from soft-
ware, in various aspects: identification of important 
classes/interfaces illustrated with examples from the 
JDK class collaboration network, comments on soft-
ware testing strategy proposed by Potanin et al. [13] 
applied to the JDK class collaboration network, con-
nection of the principle of efficient communication 
among software entities at low cost and the ultra 
small-world property, and the evolution of the Ant 
class collaboration network from the perspective of 
the Barabási-Albert model, where we found that the 
preferential attachment concept of the BA model can 
successfully model the evolution of Ant at the structu-
ral level. 

Finally, in Section 6 we give the conclusion and 
the possibilities for future work. 
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2. Related Work 

Valverde et al. [17] analyzed the JDK class colla-
boration network extracted from the class diagram 
(design level). They found that two largest connected 
components in the JDK network are scale-free (with 
gamma exponents 2.5 and 2.65, respectively) and 
small-world (small-world coefficients are 6.39 and 
6.91). They also calculated the clustering coefficient 
for both components and showed that it is larger than 
the clustering coefficient predicted by the ER model 
(clustering coefficients are 0.06 and 0.08). However, 
in their analysis link directionality was ignored. 

The same authors [18] analyzed the JDK class col-
laboration network that was represented as a directed 
graph, again extracted from the class diagram, and 
corrected previous results. They obtained γin = 2.18 
and γout = 3.39 for the largest connected component, 
and γin = 2.39, γout = 3.3 for the second largest 
connected component. Similar values for small-world 
properties were reported: 5.40 and 5.97 for small-
world coefficients, 0.225 and 0.159 for clustering 
coefficients. They showed that three more Java class 
collaboration networks formed from UML diagrams 
(two computer games written in Java, one distributed 
Java application) are scale-free, small-world, and have 
clustering coefficients larger than those predicted by 
the ER model. In order to improve the statistical ana-
lysis they also reconstructed (this time from the source 
code) and analyzed 18 more C/C++ applications. For 
all analyzed data sets, they obtained in/out degree 
power-law distributions (γin in range 1.94 to 2.55, γout 
in range 2.41 to 3.39, and for all networks γout had 
higher values than γin), small-world and larger than 
random graph clustering coefficient properties. 

Myers [12] examined collaboration networks asso-
ciated with three open source object-oriented (OO) 
systems written in C++ (VTK, DM, AbiWord) and 
three written in C (Linux, MySQL, XMMS). He com-
puted the unnormalized cumulative frequency distri-
bution for in-coming and out-going links and found 
that these distributions reveal a power-law scaling re-
gion. Values of γin are in range [1.9, 2.5], of γout in 
range [2.4, 3.33] and γout ≥ γin for each analyzed 
network. Myers also developed a simple model of 
software evolution based on two refactoring tech-
niques (decomposition of large functions into a set of 
smaller ones and removal of duplicated code). 

De Moura et al. [11] investigated collaboration 
networks of four open source software projects (Li-
nux, XFree86, Mozilla and Gimp) extracted from 
source code by parsing C/C++ header files. They 
omitted link directionality and analyzed collaboration 
networks as undirected graphs. They computed un-
normalized degree distributions and found scale-free, 
small-world and larger than random graph clustering 
coefficients. 

Potanin et al. [13] analyzed run-time object graphs 
(dynamic, run-time analogues of static collaboration 
networks) of several OO systems (Java ArgoUML, 

Java BlueJ, Java Forte, Java Jinsight, Java Satin, C++ 
GCC, Self and Smalltalk). Their research confirmed 
power laws in the in-degree and out-degree distribu-
tions. 

Wheeldon and Counsel [19] identified power-law 
relationships in several OO measures. They analyzed 
networks that represent different forms of OO coup-
ling (inheritance, aggregation, parameter type and re-
turn type). The networks were extracted from three 
Java software projects (JDK, Ant, Tomcat) using the 
AutoCode system which parses JavaDoc pages. 

Hyland-Wood et al. [4] analyzed software collabo-
ration graphs of two open source software projects 
written in Java for a fifteen-month period of develop-
ment and produced collaboration graphs at package, 
class and method levels. The collaboration graphs 
were found to form networks which exhibited appro-
ximately scale-free properties at all three levels during 
each analyzed period. 

Puppin and Silvestry [14] studied the links present 
among Java classes coming from different contexts 
(i.e., various unrelated Java software projects). They 
performed link analysis over the Java class colla-
boration network that consists of approximately 7700 
classes and concluded that the distribution of inco-
ming links follows a power-law curve with γin = 1. The 
same exponent was obtained for the network that 
contains 49500 classes. Furthermore, they proposed a 
mechanism for ranking Java classes in this kind of 
ecosystem, similar to the ranker used in the Google 
web search engine (PageRank), and presented a 
prototype search engine for Java classes. Java class 
collaboration networks analyzed in their work were 
extracted using data present in JavaDoc documents for 
related classes. 

Finally, scale-free and small-world phenomena 
were detected in agent-oriented applications [16], grid 
middleware software [20], inter-package dependency 
networks in Debian and FreeBSD distributions [7], 
and software metrics [8]. Also, there is a tendency to 
incorporate parameters of complex networks into 
traditional software metrics [9]. 

3. Extracting Class Collaboration Networks 

As part of this research, a Java program called 
Yaccne has been developed for extracting class colla-
boration networks from Java source code. Yaccne 
works in two phases. In the first phase, the nodes of a 
class collaboration network are formed. Yaccne’s 
source tree crawler passes through all packages in 
Java software projects, and files with “java” extension 
in the current package are added into the network as 
nodes. Inner classes are omitted; they do not exist as 
nodes in the class collaboration network, but a refe-
rence made in the inner class becomes a reference at-
tached to the upper class. In the second phase, links 
between nodes are determined by the following rules: 
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1. Class A provides an incoming link to class B if A 
imports B. 

2. Class A provides an incoming link to class B if B is 
in the same package as A, and A references B. 

3. In the case of a nondeterministic package import 
(e.g., import java.io.*) in class A, class A provides 
incoming links just to classes that it references, not 
to all classes from the imported package. 

4. Class A provides an incoming link to class B if A 
references B through its full package path (e.g., 
suppose A contains statement new java.io.IOEx-
ception(“Error”), and IOException is not im-
ported through a Java import statement. Then class 
A references class IOException from package 
java.io). 

5. References that come from outside of the software 
system are excluded, thus we treat the software 

project and analyze appropriate class collaboration 
networks as an isolated system. 

In order to perform node linkage, the scanner and 
the parser for the Java 1.5 language are built into 
Yaccne. The scanner and the parser are realized using 
the JavaCC [5] compiler generator. We modified the 
Java grammar that comes with this software to acquire 
the following information: list of imported classes (da-
ta used in rule 1), list of imported packages (rule 3), 
list of referential data types (rule 2), list of referential 
data types that contain dots in the name (rule 4) and 
some statistical/general information (number of fields, 
number of methods, is the class abstract, is the parsed 
entity an interface, which class extends the parsed 
class). Table 1 shows a syntactically correct Java class 
and the result of parsing described above. 

Table 1. Example of a syntactically correct Java class (left) and the result of Yaccne parsing (right) 

import java.util.LinkedList; 
import java.io.*; 
import java.awt.*; 
import java.math.BigInteger; 
 
public abstract class Simple extends Simpler { 
    private LinkedList<BigInteger> lbi =  
         new LinkedList<BigInteger>(); 
 
    public void calc() { 
       C c = new C();  D d = new D(); 
       ee.ff.Merge merger = new    
                            ee.ff.AdvancedMerge(c, d); 
       merger.converToBigI(lbi); 
    }  
    public abstract void advancedCalc(); 
} 

Imported classes:  java.util.LinkedList, 
java.math.BigInteger 
 
Imported packages:  java.io.*, java.awt.* 
 
Referential types: D, Simpler, C, LinkedList, 
BigInteger 
 
Referential types containing dot: 
ee.ff.AdvancedMerge, 
ee.ff.Merge 
 
Interface: false 
Abstract class: true 
Simple.java extends: Simpler 
Number of fields: 1 
Number of methods: 2 

 
Yaccne uses Jung-1.7.4 [6], a Java library that 

provides a variety of graph algorithms. The small-
world coefficient per node, diameter of the network 
(size of the longest path in the network), clustering 
coefficient (link direction is ignored) and PageRank 
per node are computed using this library. Yaccne gene-
rates the following files as output:  

• stats.dat: general statistics of the analyzed pro-
ject (number of nodes, number of links, total 
number of lines of code, number of interfaces, 
number of abstract classes, number of fields, 
number of methods, network diameter, small-
world coefficient and clustering coefficient), 

• nodes.dat: information about each node in the 
network (node name, in-degree, out-degree, num-
ber of lines of code, number of fields, number of 
methods, name of the base class or empty if class 
does not extend any class, depth in inheritance 
tree, is the node an interface, is the node an abst-
ract class, small-world coefficient, clustering 
coefficient, and node PageRank), 

• links.dat: information about each link in the net-
work (source node name, destination node name 
and description that says by which rule the link is 
formed), 

• in.distr: unnormalized cumulative in-degree fre-
quency distribution, 

• out.distr: unnormalized cumulative out-degree 
frequency distribution. 

Yaccne contains a subprogram called Diff that 
finds differences between two networks where the 
second network evolves from the first one by adding 
new nodes, deleting some nodes, adding new links 
and/or deleting some links. This program takes as 
input nodes.dat and links.dat of the first and the 
second network and generates two reports: one that 
contains node differences and one that contains link 
differences. With the first report we can examine the 
properties of new nodes (degree and PageRank), and 
with the second we can test the preferential attachment 
hypothesis (determine to which “old” nodes new links 
are attached). 
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4. Experiments and Results 

Class collaboration networks from five large Java 
software projects (JDK, Tomcat 6.0.13, Ant 1.7.0, 
Lucene 2.1.0 and JavaCC 3.2.0) have been extracted 
and analyzed. After that ten class collaboration net-

works from Ant version 1.5.2 to version 1.7.0 have 
been extracted and compared. 

The main statistical characteristics of analyzed 
class collaboration networks have been computed and 
summarized in Table 2. 

Table 2. Overall statistics for analyzed software systems 

 JDK Tomcat Ant Lucene JavaCC 

Number of nodes 1878 1046 778 354 79 
Number of interfaces 381 139 65 17 2 
Number of abstract classes 241 65 59 29 2 
Number of links 12806 4646 3634 2221 274 
Number of nodes without incoming links 501 264 261 126 26 
Number of nodes without outgoing links 136 108 86 49 13 
Number of nodes without in- and out-links 30 50 15 9 2 
Max. incoming links  284 193 459 110 22 
Max. outgoing links 93 61 34 30 29 
Diameter 21 11 15 10 6 
Max. inheritance depth 6 3 6 4 2 
Total lines of code 245459 154814 93510 40904 13612 

 
4.1. Degree Distributions 

As a result of our experiments, unnormalized cu-
mulative frequency distributions Nc

in(k) and Nc
out(k) 

for each extracted class collaboration network have 
been computed, where Nc(k) indicates the number of 
nodes in a network with degree greater than or equal 
to k. Nc(k) is an unnormalized integral of the prob-
ability distribution P(k), and if P(k) ~ k –γ, then Nc(k) ~ 
k –γ+1 (the indefinite integral of a power function is the 
power function with the exponent increased by one). A 
linear function was fitted to the linear ranges of log-
log plotted distributions in order to estimate the value 
of the gamma exponent. Figures 1, 2, 3, 4 and 5 show 
in-coming and out-going degree distributions for JDK, 
Ant, Tomcat, Lucene and JavaCC, respectively (with 
values of the Pearson correlation coefficient R, and 
standard deviation SD), and Table 3 lists gamma ex-
ponent values with the square of the Pearson corre-
lation coefficient (R2) for the linear fit. Gamma 
exponent values for in-coming and out-going link fre-

quency distribution for JDK are similar to those 
reported by Valverde and Solé [18]. This result is 
significant because we used different sources for 
extracting the class collaboration network – we have 
done it from the source code, Valverde and Solé from 
the class diagram. Linear ranges of the distributions 
are followed by a faster decay at the large number of 
connections (k). This phenomenon was also reported 
by Myers [12] and Hyland-Wood et al. [4]. The Pear-
son correlation coefficient gives us the quality of the 
linear fit. If 0.95 is taken as a minimal reliable value, 
we can state a power law for the JDK in-coming, JDK 
out-going, Ant in-coming, Tomcat out-going (very 
close to 0.95) and JavaCC out-going link degree dis-
tributions. Other distributions can be considered as ap-
proximately power-law (R2 values are higher than 
0.90, except for JavaCC where R2 is very close 
to 0.90). For all analyzed networks we determined that 
γout ≥ γin, except for JavaCC. 

 
Figure 1. Unnormalized in-coming (left) and out-going (right) link frequency distributions for the JDK class collaboration 

network. For the out-going link distribution we fitted a linear function for degrees greater than or equal to 10 
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Figure 2. Unnormalized in-coming (left) and out-going (right) link frequency distributions for the Ant class collaboration 

network. For the out-going link distribution we fitted a linear function for degrees greater than 5 
 

 
Figure 3. Unnormalized in-coming (left) and out-going (right) link frequency distributions for the Tomcat class collaboration 

network. For the out-going link distribution we fitted a linear function for degrees greater than 5 
 

 
Figure 4. Unnormalized in-coming (left) and out-going (right) link frequency distributions for the Lucene class collaboration 

network. For the out-going link distribution we fitted a linear function for degrees greater than 5 
 

 
Figure 5. Unnormalized in-coming (left) and out-going (right) link frequency distributions for the JavaCC class  

collaboration network 
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Table 3. Gamma exponents with the square of the Pearson correlation coefficient for linear fit per class collaboration network 

Class collaboration network γin 2
inR  γout 2

outR  
JDK 2.17493 0.9541 3.63214 0.9667 
Ant 2.05001 0.9927 3.93654 0.9281 
Tomcat 2.35234 0.9294 3.5026 0.9499 
Lucene 1.98075 0.9050 4.29761 0.9028 
JavaCC 2.26362 0.8946 2.20816 0.9656 

 
The fact that degree distributions presented in Fi-

gures 1–5 can be well approximated by power laws 
tells us that the node-degree characteristic of class 
collaboration networks is highly variable: there is a 
broad spectrum of values it can take and statistically 
significant numbers of nodes with degree which is far 
from the average node degree. This degree heteroge-
neity property is discussed more deeply in Section 5.  

4.2. Small-World and Clustering Coefficient 

Let us denote the average number of links per node 
with μ. In all analyzed networks μ is much smaller 
than the total number of nodes N, which indicates that 
the networks are sparse [11]. The small-world pro-
perty is very meaningful in sparse networks because, 
despite large network size, there exists a relatively 
short path between any pair of nodes. 

A random network with given N and μ (N >> μ) is 
characterized by having small values of l (small-world 
coefficient) and c (clustering coefficient). For random 

networks the small-world coefficient can be 
approximated by lrand ~ ln(N)/ln(μ) and the clustering 
coefficient by crand ~ μ/N [11].  

Table 4 shows small-world and clustering coeffi-
cients for the analyzed networks, with values of small-
world and clustering coefficients for random graphs of 
the same size. Small-world and clustering coefficient 
values for the JDK class collaboration network are 
close to those reported by Valverde and Solé [18]. As 
pointed out in Section 2, the class collaboration net-
works explored in [17], [18] and [11] have small-
world coefficients approximately equal to the small-
world coefficients of random graphs of the same size, 
and higher clustering coefficients. The same holds for 
the class collaboration networks we analyzed, except 
for the small-world values of the Ant and JavaCC 
class collaboration networks. These two networks can 
be considered as ultra small-worlds (lTomcat ~ 
ln(ln(NTomcat)) and lJavaCC ~ ln(ln(NJavaCC)). In all net-
works, c >> crand . 

Table 4. Small-world and clustering coefficient values of analyzed networks with expected values for random graphs of the same 
size 

 #nodes #links μ/2 l lrand c crand 
JDK 1878 12806 6.82 4.391 3.93 0.453 0.0036 
Ant 778 3634 4.67 4.131 4.32 0.505 0.0060 
Tomcat 1046 4646 4.44 1.909 4.66 0.464 0.0042 
Lucene 354 2221 6.27 2.278 3.19 0.386 0.0177 
JavaCC 79 274 3.47 1.220 3.52 0.437 0.0439 

 
4.3.  Evolution of the Ant Class Collaboration 

Network 

Ten class collaboration networks extracted from 
successive versions of Ant (versions 1.5.2, 1.5.3, 
1.5.4, 1.6.0, 1.6.1, 1.6.2, 1.6.3, 1.6.4, 1.6.5 and 1.7.0) 
were analyzed and changes from one version to the 
next version were observed. From the theoretical pers-
pective, an artificial complex network generated by 
the BA model, or its modifications which employ the 
preferential attachment principle, evolves into a 
perfect scale-free state. Ant is the ideal candidate, 
among the software systems studied in this paper, to 
test whether the preferential attachment principle for 
newly added nodes can explain scale-free state of 
some real-world software network. Ant’s class colla-
boration network evolves from version 1.5.2 to ver-
sion 1.7.0 into almost perfect scale-free state: a power 
law nearly ideally fits Ant’s complementary cumu-

lative incoming degree distribution in version 1.7.0 
(see Figure 2, left). 

From version 1.5.2 to version 1.5.4 modifications 
in the class collaboration network structure were mi-
nor. All three networks have the same nodes (there 
were no new classes or interfaces added, and nothing 
was removed from the project), but the 1.5.3 network 
has three new links with respect to 1.5.2, and 1.5.4 has 
one more link than 1.5.3. We detected the first massive 
change in class collaboration network structure in the 
transition from version 1.5.4 to version 1.6.0. In 1.6.0 
there exist 114 new nodes which did not exist in the 
1.5.4 network. Ten of them are new interfaces and 104 
are new classes. All nodes from the 1.5.4 network re-
main in the 1.6.0 network (nothing was deleted). In 
Figure 6 (left) we plot the series of pairs (xk, yk) for 
each node in the 1.5.4 network, where xk represents 
the number of in-coming links for node k in network 
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1.5.4 and yk the number of newly attached in-coming 
links by nodes that are added as new in the 1.6.0 net-
work (which do not exist in the 1.5.4 network). This 
chart shows that nodes which had higher in-coming 
link degree in the 1.5.4 network received more in-
coming links from nodes added in version 1.6.0 than 
those with smaller in-coming link degrees. The node 
org.apache.tools.ant.BuildException, which has 
336 in-coming links in the 1.5.4 network (the node 
with the highest in-coming link degree) received 63 
new in-coming links by newly introduced nodes 
(which is the highest number of newly added in-

coming links to one node). Similar behavior was 
observed at the node with the second largest in-degree 
(org.apache.tools.ant.Project – in the 1.5.4 network 
it has 220 in-coming links, receiving 43 links from 
nodes which appeared in the 1.6.0 network), and with 
the third largest as well (org.apache.tools.ant.Task 
– in the 1.5.4 network it has 124 in-coming links). 
These three nodes are the three most preferential 
nodes viewed from the perspective of the Barabási-
Albert model (having the highest in-coming link 
degree) and they received the most in-coming links 
from nodes added in the new version of the software.  

 
Figure 6. Left: Plot of series of pairs (xk, yk) for each node in the Ant 1.5.4 network, where xk represents the number of in-coming 

links for node k in network 1.5.4 and yk the number of newly attached in-coming links by nodes that were added as new  
in the 1.6.0 network. Right: Analogous plot for the version transition from 1.6.5 to 1.7.0 

Changes in the structure of the class collaboration 
network from version 1.6.0 to 1.6.1 were not drastic. 
Four nodes and 18 links were added to the network. 
All nodes in 1.6.0 appear also in 1.6.1 (nothing was 
deleted). Seventeen links out of 18 new ones are 
attached as in-coming links to 1.6.0 nodes. Most of 
them are distributed to the preferential nodes 
(BuildException, Project /the two nodes with highest 
in-degree/, org.apache.tools.ant.types.Command-
line and org.apache.tools.ant.taskdefs.Execute). 

Version 1.6.2 brings 16 new nodes and 75 new 
links, but only 27 links (out of 75) are links from new 
nodes to the old ones. Most of them again point to the 
preferential nodes: BuildException (7), Project (4) 
and Task (4). 

Version 1.6.3 brings 20 new nodes and 141 new 
links. Eighty-seven (out of 141) are interesting – the 
ones that point to the old nodes from the new nodes. 
The largest numbers of in-coming links were assigned 
to classes that had the largest number of in-coming 
links before adding new nodes (BuildException, 17 
new in-coming links). Thirty-six links were attached 
to the 16 nodes that have an in-coming link degree 
higher than ten, 21 to the 20 nodes that have incoming 
link degree higher than or equal to 5, and 13 to the 7 
nodes that have an in-coming link degree less than 5. 

The class collaboration network extracted from 
version 1.6.4 has minor differences to the extracted 

collaboration network from the previous version 
(1.6.3): both have the same nodes, two new links are 
present in the 1.6.4 network. 

Version 1.7.0 brings big structural changes in the 
class collaboration network. There are 132 new nodes, 
and for the first time some nodes from the previous 
collaboration network were deleted (44 of them). The 
total number of new links is 634, 129 pointing from 
some new node to some new node, 144 from some old 
node to another old node, and 361 from some new 
node to some old node. Figure 6 (right) plots the series 
of pairs (xk, yk) for each node in the 1.6.5 network, 
where xk represents the number of in-coming links for 
node k in network 1.6.5, and yk the number of newly 
attached in-coming links from nodes that are added as 
new in the 1.7.0 network. As in the case of the 1.5.4 to 
1.6.0 version transition (depicted in Figure 6, left), in 
Figure 6 (right) we observe that the two nodes with 
the highest in-coming link degree (BuildException 
and Project) received the most in-coming links. 

The same type of real-world network analysis pre-
sented here can be performed on other software sys-
tems as well, and possible evidence of preferential 
attachment would suggest that this principle is tolerant 
to small fluctuations from perfect scale-free state in 
class collaboration network structure. 
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5. Implications on Software Engineering 

In the previous section we showed that extracted 
class collaboration networks from selected Java soft-
ware projects are scale-free, or approximately scale-
free. This result has both theoretical and practical va-
lues. First of all, it suggests that similar organization 
principles are the foundation for the evolution of 
software systems and other complex networks, such as 
social and biological networks, which also have the 
scale-free property [1]. This implies that the study of 
complex networks, in general, can be a useful heuris-
tic to understand structural complexity and evolution 
of software systems.  

Based on the scale-free property of the class colla-
boration network, important classes/interfaces in a 
large Java software system can be identified. The most 
prominent feature of a scale-free network is the 
power-law degree distribution. The direct effect of a 
power-law distribution in Java class collaboration net-
works is that there are a few classes/interfaces with a 
much larger number of connections (high in-coming 

or out-going node degree) to other classes/interfaces 
compared to the average. As noted by Myers [12], a 
high in-degree typically results from code reuse. It is 
very difficult to change highly reused classes/inter-
faces because of their importance for the stability of 
the system [18]. A high number of outgoing links indi-
cates that a class has a high degree of aggregation, and 
nodes with small out-degree are generally simple, 
since they do not aggregate other classes [12]. 

In our study we identified top ten highest in-degree 
and out-degree classes/interfaces in JDK. They are 
shown in Tables 5 and 6, respectively. As can be seen, 
classes java.awt.Component and javax.swing. 
JComponent are in the top ten classes by both in-
degree and out-degree, which means that these classes 
exhibit a high degree of reuse and aggregation at the 
same time. These two classes have both significant in-
ternal complexity (due to aggregating the behavior of 
several other classes) and significant external respon-
sibility (because they are used in a lot of other classes 
in the system). 

Table 5. Top ten highest in-degree nodes in JDK 

Class name #InLinks #OutLinks PageRank LOC Cp 
java.io.IOException 284 0 0.0416 10 0 
java.io.Serializable 279 0 0.484 3 0 
java.awt.Component 226 76 0.0087 2489 734292275264 
java.awt.Graphics 225 11 0.0055 163 998476875 
java.awt.Rectangle 208 5 0.0064 243 262828800 
javax.swing.JComponent 205 68 0.004 2045 397391762000 
java.awt.Dimension 187 2 0.0051 56 7833056 
java.util.Vector 174 7 0.0044 332 477694728 
javax.swing.plaf.ComponentUI 169 7 0.0051 45 62977005 
java.awt.Color 157 15 0.0029 452 2506803300 

 
Table 6. Top ten highest out-degree nodes in JDK 

Class name #OutLinks #InLinks PageRank LOC Cp 
java.awt.Toolkit 93 25 0.002 595 3216346875 
java.awt.Component 76 226 0.0087 2489 734292275264 
javax.swing.JTable 75 7 0.0002 2549 702568125 
javax.swing.text.JtextComponent 71 40 0.0006 1498 12082268800 
javax.swing.JComponent 68 205 0.004 2045 397391762000 
javax.swing.text.html.HTMLEditorKit 67 6 0.0001 972 157079088 
javax.swing.plaf.basic.BasicTreeUI 60 3 0.0001 2324 75297600 
javax.swing.JEditorPane 56 10 0.0001 1047 328339200 
javax.swing.JTree 50 8 0.0003 2208 353280000 
javax.swing.AbstractButton 49 33 0.0007 1145 2993818905 

 
It is interesting to observe that in-degree and out-

degree measures are very similar to the information-
flow metrics defined by Henry and Kafura [3]: fan-in 
(the number of other functions calling a given function 
in a module) and fan-out (the number of other func-
tions being called from a given function in a module). 
Actually, in-degree and out-degree are fan-in and fan-

out analogues at the class collaboration level. Henry 
and Kafura [3] defined a complexity metric Cp calcu-
lated as LOC · (fan-in · fan-out)2, where LOC repre-
sents the number of lines of code in a software entity. 
According to Zimmermann et al. [21], components 
with a large fan-in and fan-out may indicate poor de-
sign and such modules have to be decomposed 
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correctly. If Cp for the class is defined as LOC · (in-
degree · out-degree)2 then, in the JDK case, two clas-
ses with the highest complexity are java.awt.Compo-
nent and javax.swing.JComponent, and their Cp is 
at least one order of magnitude higher than others (Cp 
values for the top ten in-degree/out-degree nodes are 
shown in Tables 5 and 6).  

One important aspect of scale-free networks is 
their robustness to damage [1]. In the case of software 
systems with scale-free topology at the class collabo-
ration level this means that random errors may not 
cause major crashes of the whole system. This can 
explain why many large software systems can function 
properly most of the time even with software defects. 
However, if errors happen within classes that have 
high in-coming degree (classes with significant exter-
nal responsibility), this can cause the whole system to 
fail. On this basis Potanin et al. [13] suggested that by 
concentrating debugging methodologies on such well-
connected classes, rather than the small ones, software 
engineers may be able to improve the reliability of 
code more efficiently. The idea is simple: first elimi-
nate bugs from the classes that have major impact on 
the system stability, then deal with other classes. The 
first step of this debugging approach is to identify 
classes that have highest in-coming degree. Therefore, 
in the JDK case, classes from the top ten list will be 
tested first. We can see that in the top ten list we have 
classes/interfaces with a high number of in-coming 
links and small number of out-going links (for 
example, java.io.IOException is the most reused 
class and java.io.Serializable the most implemented 
interface, both entities are without out-going links – 
no aggregation, having 10 and 3 lines of code, 
respectively, Cp = 0 for both entities). These entities 
are quite simple and do not use other components, so 
with a little effort it can be determined if they are 
functioning properly. On the other side, we can see in 
the top ten list the classes with high in-degree and 
high out-degree at the same time (already mentioned 
java.awt.Component and javax.swing.JCompo-
nent). In order to validate these classes, all classes 
used by them must be previously validated. Obviously, 
classes with higher values of the Cp are “problematic” 
(in the sense of having higher priority) in the debug-
ging strategy described above. 

One of the recognized principles to follow in soft-
ware development is the principle of efficient commu-
nication among software entities at low cost, that is, a 
software system should have a relatively average shor-
test path length [10]. In other words, transport of in-
formation between classes is more efficient when the 
small-world coefficient of the class collaboration 
network is smaller. In this research we showed that all 
analyzed class-collaboration networks have the small-
world property. It is interesting that we found two 
networks with the ultra small-world property: Tomcat 
and JavaCC. Cohen and Havlin [2] showed that the 
lower bound on the small-world coefficient of any 
scale-free network with gamma exponent greater than 

2 is of the order of ln(ln(N)) (N is the number of nodes 
in the network). Class collaboration networks of Tom-
cat and JavaCC can be considered as approximately 
scale-free and both have gamma-in/gamma-out expo-
nents greater than 2 (see Table 3). This means that this 
principle of efficient communication at low cost is 
maximized in those Java projects.  

In Section 4.3 we described the evolution of the 
Ant class collaboration network extracted from ver-
sion 1.5.2 to version 1.7.0. Our motivation for this 
analysis was to check the preferential attachment 
hypothesis introduced by the Barabási-Albert model, 
in order to determine whether that hypothesis can mo-
del the evolution of the Ant software system at the 
structural level. The BA model states two conditions 
for a scale-free topology. The first is that the network 
is growing. If, for example, we observe the 1.5.4 to 
1.6.0 network transition, we will see that 104 nodes 
were added to network 1.5.4 which results in network 
1.6.0, therefore this first condition of the BA model is 
satisfied. The second condition of the BA model is 
that nodes with a higher in-coming link degree have a 
higher probability of receiving an in-coming link from 
newly introduced nodes than nodes with a lower in-
coming link degree. In the Ant class collaboration 
network’s transition from version 1.5.4 to version 
1.6.0 we have the situation that the highest in-coming 
link degree nodes (classes org.apache.tools.ant. 
BuildException, org.apache.tools.ant.Project and 
org.apache.tools.ant.Task) received the most in-
coming links by newly added nodes, thus the second 
condition of the BA model is also satisfied. Similar 
behavior can be detected in the transitions 1.6.0–1.6.1, 
1.6.1–1.6.2, 1.6.2–1.6.3 and 1.6.5–1.7.0. We can con-
clude that the Barabási-Albert concept of preferential 
attachment can successfully model the structural 
changes in the Ant class collaboration network. 

However, the BA model has two disadvantages in 
order to be a good predictive model for software evo-
lution at the structural level. First, it generates scale-
free topology with gamma exponent that has a cons-
tant value 3. Second, it cannot produce hierarchical 
structures [12]. This is very important because it was 
observed that engineered design leads to hierarchical 
structures [15]. Our future work will be focused on 
extending the BA model (making a new model on the 
basis of the preferential attachment hypothesis) in 
order to facilitate these two capabilities.  

6. Conclusion and Future Work 

This paper investigated statistical properties (de-
gree distributions, small-world and clustering coeffi-
cients) of class collaboration networks formed in five 
large Java software projects (JDK, Ant, Tomcat, Lu-
cene and JavaCC) and showed that these networks 
exhibited scale-free or nearly scale-free and small-
world properties, while for Tomcat and JavaCC we 
detected the ultra small-world property. Furthermore, 
we showed that the clustering coefficient value of all 
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examined networks is significantly larger than the 
clustering coefficient value for the random graph of 
the same size. Pure topological properties and pheno-
mena that were detected enabled us to derive impli-
cations related to practical software engineering issues 
in several aspects: identification of classes important 
to software stability and evolution; Henry-Kafura met-
rics and their relation to problems with the software 
testing strategy proposed in [13]; detection of maxi-
mal utilization of the communication efficiency 
principle. The first two aspects were discussed with 
regards to the JDK class collaboration network, and 
the last one from the perspective of class collaboration 
networks with scale-free and ultra small-world pro-
perties. 

In order to check the preferential attachment rule 
of the BA model, we captured class collaboration net-
works from ten successive versions of Ant, and ana-
lyzed changes in network structure. Results show that 
nodes with higher in-coming link degree receive more 
in-coming links from new nodes than others. This 
means that the preferential attachment concept intro-
duced in the BA model can explain structural changes 
in the Ant’s class collaboration network and provide 
clues about how the network evolved into a scale-free 
state (the state that was identified by observed degree 
distributions that follow the power law). On the other 
hand, the BA model is incapable of generating hierar-
chical structures, which is clearly relevant for software 
design. Our future work will include an investigation 
of class collaboration network evolution in other large 
Java software projects with more evolutionary steps, 
in order to obtain further empirical evidence of soft-
ware evolution at collaboration (structural) level, and 
defining a model that incorporates the preferential at-
tachment concept with the capability of generating 
hierarchical structures. 
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