
48

ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2011, Vol.40, No.1

CHARACTERISTICS OF CLASS COLLABORATION NETWORKS
IN LARGE JAVA SOFTWARE PROJECTS

Miloš Savić, Mirjana Ivanović, Miloš Radovanović
Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad

Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia
e-mail: milsav@gmail.com, mira@dmi.uns.ac.rs, radacha@dmi.uns.ac.rs

Abstract. Understanding software structural complexity and evolution plays an important role in controlling the
software development and maintenance process. Recent studies have shown that the theory behind complex networks,
especially the theory of scale-free networks, can be a useful approach to the analysis of concrete software systems. In
this paper, class collaboration networks associated with five large Java software systems (JDK, Ant, Tomcat, Lucene
and JavaCC) are analyzed in order to determine whether they belong to the class of scale-free networks, and examine
their small-world characteristics. For each analyzed network, we detected (approximately) scale-free and (ultra) small-
world properties. The results indicate that general conclusions from scale-free network theory can be applied to Java
software systems in order to understand their structural complexity and model software evolution at the structural
(class collaboration) level. Moreover, we examine class collaboration network evolution of Ant, in order to check the
preferential attachment hypothesis of the Barabási-Albert model. For several major Ant network transitions we con-
clude that preferential attachment can successfully model Ant evolution at the class collaboration level. Finally, we
discuss the implications of our results on software engineering, in several aspects: identification of important clas-
ses/interfaces, software testing strategy, and efficient communication among software entities.

Keywords: collaboration network, Java, scale-free, small-world, software evolution.

1. Introduction

In the past decade, researchers have investigated a
variety of real-world systems modeled as complex
networks, which connect a number of subsystems and
components using different types of relations. Empiri-
cal studies of existing complex networks (e.g., the
World-Wide-Web, collaborations in science, ecologi-
cal networks, metabolic networks, power networks,
etc.) have shown that these networks, despite repre-
senting different types of systems, share many com-
mon features such as power-law degree distribution,
the small-world property, and high levels of clustering.
These discoveries inspired a theory of complex
networks which focuses on principles by which net-
worked systems form, evolve, and remain robust. Re-
cent research confirmed that networks formed from
large software systems (class collaboration networks
in the case of Object-Oriented /OO/ software systems)
have a topology common to large real-world and engi-
neered networks and share the already mentioned
features.

A large computer program is typically divided into
many interacting units at many levels of granularity. In
the case of Java programs, the smaller units can be
viewed as packages at the first level, classes and

interfaces at the second level, and methods at the third
level of granularity. Logical connections of classes
and interfaces define a network that is often referred to
as a class collaboration network (from this point on,
we do not make the distinction between classes and
interfaces – both will be referred to by the term
“class”). Classes collaborate in various ways: one
class may instantiate and use objects of another class
(using objects of different classes as method argu-
ments or return values, and calling methods of objects
of different classes); a class can extend the
functionality of another class (inheritance), implement
some interface presented in the software system, etc.
In all cases we say that a class references another
class. Classes can be viewed as vertices (nodes) and
references between them as edges (links or arcs, in
case of directional connections) in a class
collaboration network, therefore it is natural to
represent this kind of network as a directed graph.

Topological measurements of complex networks
include degree distribution, the small-world coeffi-
cient and the clustering coefficient [1]. Degree distri-
bution P(k), summarizing the connectivity of each
node in a network, indicates the probability that a
randomly selected node has exactly k incident edges.
In the case of directed graphs, node degree can be in-

http://dx.doi.org/10.5755/j01.itc.40.1.192

Characteristics of Class Collaboration Networks in Large Java Software Projects

49

coming (number of links entering the node), or out-
going (number of links exiting the node), thus there
are two types of degree distributions: in-degree and
out-degree. While the degree distribution of a random
graph (a graph generated by the Erdős and Rényi /ER/
model) is binomial (Poisson in the limit), degree dis-
tributions of large real-world networks follow power-
law P(k) ~ k –γ characteristics [1]. This means that
small values of node degree are very common,
whereas large values are extremely rare. All networks
having this type of distribution are referred to as
scale-free. Albert and Barabási [1] proposed a one-
parameter model for generating scale-free networks
with γ = 3, known as the Barabási-Albert (BA) model.
The main properties of this model are network growth
(in each iteration one new node is attached to the
network), and the rule of preferential attachment (a
node with higher degree has higher probability to re-
ceive an incoming link from a node that is being at-
tached to the network than a node with lower degree).

Having the small-world property means that the
average distance between two randomly chosen nodes
in the network is a small value, much smaller than the
number of nodes in the network. The distance between
two nodes is defined as the number of edges along the
shortest path connecting them [1]. The small-world
coefficient l, a numerical value that reflects the small-
world property of a network, is calculated as the
average value of small-world coefficients of each
node. The small-world coefficient for a node is the
average value of the distance between the selected
node and all others directly or indirectly connected to
it. Many studies showed that the small-world coeffi-
cient of large real-world networks scales proportio-
nally to the natural logarithm of the number of nodes.
Networks with l ~ ln(ln(N)), where N is the number of
nodes, are called “ultra small-worlds” [4].

Clustering is a significant characteristic of small-
world networks. The inherent tendency to cluster, i.e.
the tendency of the neighbors of a node to be neigh-
bors themselves, is quantified by the clustering coeffi-
cient. The clustering coefficient is usually computed
for undirected graphs, while for networks that have
directed links directionality is ignored [12]. The
clustering coefficient for node i having ki edges which
connect to ki other nodes is the ratio between the
number of edges that exist between these ki nodes and
the number of edges in the complete graph that con-
sists of ki nodes, which is ki (ki – 1)/2. The clustering
coefficient of the whole network is the average clus-
tering coefficient of all nodes. In most real-world net-
works that were analyzed, the clustering coefficient is
typically much larger than in a comparable random
network (which has the same number of nodes and
edges as the real-world network) [1].

1.1. Motivation and Contributions

There exist many studies that focus on questions
relating to how software should be written and

structured. However, comparatively few studies exa-
mine the internal structure of concrete, widely used,
software systems. A representative selection of these
works, which view software systems as complex net-
works, is reviewed in Section 2 of this paper.

The initial motivation for this study was to verify
the results by Valverde and Solé [18], who showed
that the class collaboration network of the Java De-
velopment Kit (JDK) has scale-free and small-world
properties. In order to achieve the first step of extrac-
ting the class collaboration network from JDK, we de-
veloped a Java software utility that is able to extract
class collaboration networks from arbitrary Java soft-
ware based on source code analysis. This software uti-
lity is described in Section 3.

Next, we computed basic statistical properties of
the JDK class collaboration network (gamma expo-
nents of in/out degree distributions, small-world and
clustering coefficient) and compared with those
reported by Valverde and Solé [18]. However, we
extended our research to class collaboration networks
associated with several other widely used Java soft-
ware systems, and analyzed four more class collabora-
tion networks (networks extracted from Ant, Tomcat,
Lucene and JavaCC) in order to determine whether
they belong to the class of scale-free networks. For
each network we detected scale-free or approximately
scale-free properties. Small-world and clustering coef-
ficients of these networks were computed and com-
pared with small-world and clustering coefficients of
random graphs of the same size. Moreover, for Tomcat
and JavaCC networks we detected the ultra small-
world property. In addition, we extracted class colla-
boration networks from ten successive version of one
Java software project (Ant from version 1.5.2 to
version 1.7.0) and compared them in order to analyze
Ant class collaboration network evolution. Section 4
describes these experiments and their results in more
detail.

In Section 5 we discuss the implications of the re-
sults of our experiments on software engineering. We
analyze several theoretical and practical merits of the
scale-free properties of networks extracted from soft-
ware, in various aspects: identification of important
classes/interfaces illustrated with examples from the
JDK class collaboration network, comments on soft-
ware testing strategy proposed by Potanin et al. [13]
applied to the JDK class collaboration network, con-
nection of the principle of efficient communication
among software entities at low cost and the ultra
small-world property, and the evolution of the Ant
class collaboration network from the perspective of
the Barabási-Albert model, where we found that the
preferential attachment concept of the BA model can
successfully model the evolution of Ant at the structu-
ral level.

Finally, in Section 6 we give the conclusion and
the possibilities for future work.

M. Savić, M. Ivanović, M. Radovanović

50

2. Related Work

Valverde et al. [17] analyzed the JDK class colla-
boration network extracted from the class diagram
(design level). They found that two largest connected
components in the JDK network are scale-free (with
gamma exponents 2.5 and 2.65, respectively) and
small-world (small-world coefficients are 6.39 and
6.91). They also calculated the clustering coefficient
for both components and showed that it is larger than
the clustering coefficient predicted by the ER model
(clustering coefficients are 0.06 and 0.08). However,
in their analysis link directionality was ignored.

The same authors [18] analyzed the JDK class col-
laboration network that was represented as a directed
graph, again extracted from the class diagram, and
corrected previous results. They obtained γin = 2.18
and γout = 3.39 for the largest connected component,
and γin = 2.39, γout = 3.3 for the second largest
connected component. Similar values for small-world
properties were reported: 5.40 and 5.97 for small-
world coefficients, 0.225 and 0.159 for clustering
coefficients. They showed that three more Java class
collaboration networks formed from UML diagrams
(two computer games written in Java, one distributed
Java application) are scale-free, small-world, and have
clustering coefficients larger than those predicted by
the ER model. In order to improve the statistical ana-
lysis they also reconstructed (this time from the source
code) and analyzed 18 more C/C++ applications. For
all analyzed data sets, they obtained in/out degree
power-law distributions (γin in range 1.94 to 2.55, γout
in range 2.41 to 3.39, and for all networks γout had
higher values than γin), small-world and larger than
random graph clustering coefficient properties.

Myers [12] examined collaboration networks asso-
ciated with three open source object-oriented (OO)
systems written in C++ (VTK, DM, AbiWord) and
three written in C (Linux, MySQL, XMMS). He com-
puted the unnormalized cumulative frequency distri-
bution for in-coming and out-going links and found
that these distributions reveal a power-law scaling re-
gion. Values of γin are in range [1.9, 2.5], of γout in
range [2.4, 3.33] and γout ≥ γin for each analyzed
network. Myers also developed a simple model of
software evolution based on two refactoring tech-
niques (decomposition of large functions into a set of
smaller ones and removal of duplicated code).

De Moura et al. [11] investigated collaboration
networks of four open source software projects (Li-
nux, XFree86, Mozilla and Gimp) extracted from
source code by parsing C/C++ header files. They
omitted link directionality and analyzed collaboration
networks as undirected graphs. They computed un-
normalized degree distributions and found scale-free,
small-world and larger than random graph clustering
coefficients.

Potanin et al. [13] analyzed run-time object graphs
(dynamic, run-time analogues of static collaboration
networks) of several OO systems (Java ArgoUML,

Java BlueJ, Java Forte, Java Jinsight, Java Satin, C++
GCC, Self and Smalltalk). Their research confirmed
power laws in the in-degree and out-degree distribu-
tions.

Wheeldon and Counsel [19] identified power-law
relationships in several OO measures. They analyzed
networks that represent different forms of OO coup-
ling (inheritance, aggregation, parameter type and re-
turn type). The networks were extracted from three
Java software projects (JDK, Ant, Tomcat) using the
AutoCode system which parses JavaDoc pages.

Hyland-Wood et al. [4] analyzed software collabo-
ration graphs of two open source software projects
written in Java for a fifteen-month period of develop-
ment and produced collaboration graphs at package,
class and method levels. The collaboration graphs
were found to form networks which exhibited appro-
ximately scale-free properties at all three levels during
each analyzed period.

Puppin and Silvestry [14] studied the links present
among Java classes coming from different contexts
(i.e., various unrelated Java software projects). They
performed link analysis over the Java class colla-
boration network that consists of approximately 7700
classes and concluded that the distribution of inco-
ming links follows a power-law curve with γin = 1. The
same exponent was obtained for the network that
contains 49500 classes. Furthermore, they proposed a
mechanism for ranking Java classes in this kind of
ecosystem, similar to the ranker used in the Google
web search engine (PageRank), and presented a
prototype search engine for Java classes. Java class
collaboration networks analyzed in their work were
extracted using data present in JavaDoc documents for
related classes.

Finally, scale-free and small-world phenomena
were detected in agent-oriented applications [16], grid
middleware software [20], inter-package dependency
networks in Debian and FreeBSD distributions [7],
and software metrics [8]. Also, there is a tendency to
incorporate parameters of complex networks into
traditional software metrics [9].

3. Extracting Class Collaboration Networks

As part of this research, a Java program called
Yaccne has been developed for extracting class colla-
boration networks from Java source code. Yaccne
works in two phases. In the first phase, the nodes of a
class collaboration network are formed. Yaccne’s
source tree crawler passes through all packages in
Java software projects, and files with “java” extension
in the current package are added into the network as
nodes. Inner classes are omitted; they do not exist as
nodes in the class collaboration network, but a refe-
rence made in the inner class becomes a reference at-
tached to the upper class. In the second phase, links
between nodes are determined by the following rules:

Characteristics of Class Collaboration Networks in Large Java Software Projects

51

1. Class A provides an incoming link to class B if A
imports B.

2. Class A provides an incoming link to class B if B is
in the same package as A, and A references B.

3. In the case of a nondeterministic package import
(e.g., import java.io.*) in class A, class A provides
incoming links just to classes that it references, not
to all classes from the imported package.

4. Class A provides an incoming link to class B if A
references B through its full package path (e.g.,
suppose A contains statement new java.io.IOEx-
ception(“Error”), and IOException is not im-
ported through a Java import statement. Then class
A references class IOException from package
java.io).

5. References that come from outside of the software
system are excluded, thus we treat the software

project and analyze appropriate class collaboration
networks as an isolated system.

In order to perform node linkage, the scanner and
the parser for the Java 1.5 language are built into
Yaccne. The scanner and the parser are realized using
the JavaCC [5] compiler generator. We modified the
Java grammar that comes with this software to acquire
the following information: list of imported classes (da-
ta used in rule 1), list of imported packages (rule 3),
list of referential data types (rule 2), list of referential
data types that contain dots in the name (rule 4) and
some statistical/general information (number of fields,
number of methods, is the class abstract, is the parsed
entity an interface, which class extends the parsed
class). Table 1 shows a syntactically correct Java class
and the result of parsing described above.

Table 1. Example of a syntactically correct Java class (left) and the result of Yaccne parsing (right)

import java.util.LinkedList;
import java.io.*;
import java.awt.*;
import java.math.BigInteger;

public abstract class Simple extends Simpler {
 private LinkedList<BigInteger> lbi =
 new LinkedList<BigInteger>();

 public void calc() {
 C c = new C(); D d = new D();
 ee.ff.Merge merger = new
 ee.ff.AdvancedMerge(c, d);
 merger.converToBigI(lbi);
 }
 public abstract void advancedCalc();
}

Imported classes: java.util.LinkedList,
java.math.BigInteger

Imported packages: java.io.*, java.awt.*

Referential types: D, Simpler, C, LinkedList,
BigInteger

Referential types containing dot:
ee.ff.AdvancedMerge,
ee.ff.Merge

Interface: false
Abstract class: true
Simple.java extends: Simpler
Number of fields: 1
Number of methods: 2

Yaccne uses Jung-1.7.4 [6], a Java library that

provides a variety of graph algorithms. The small-
world coefficient per node, diameter of the network
(size of the longest path in the network), clustering
coefficient (link direction is ignored) and PageRank
per node are computed using this library. Yaccne gene-
rates the following files as output:

• stats.dat: general statistics of the analyzed pro-
ject (number of nodes, number of links, total
number of lines of code, number of interfaces,
number of abstract classes, number of fields,
number of methods, network diameter, small-
world coefficient and clustering coefficient),

• nodes.dat: information about each node in the
network (node name, in-degree, out-degree, num-
ber of lines of code, number of fields, number of
methods, name of the base class or empty if class
does not extend any class, depth in inheritance
tree, is the node an interface, is the node an abst-
ract class, small-world coefficient, clustering
coefficient, and node PageRank),

• links.dat: information about each link in the net-
work (source node name, destination node name
and description that says by which rule the link is
formed),

• in.distr: unnormalized cumulative in-degree fre-
quency distribution,

• out.distr: unnormalized cumulative out-degree
frequency distribution.

Yaccne contains a subprogram called Diff that
finds differences between two networks where the
second network evolves from the first one by adding
new nodes, deleting some nodes, adding new links
and/or deleting some links. This program takes as
input nodes.dat and links.dat of the first and the
second network and generates two reports: one that
contains node differences and one that contains link
differences. With the first report we can examine the
properties of new nodes (degree and PageRank), and
with the second we can test the preferential attachment
hypothesis (determine to which “old” nodes new links
are attached).

M. Savić, M. Ivanović, M. Radovanović

52

4. Experiments and Results

Class collaboration networks from five large Java
software projects (JDK, Tomcat 6.0.13, Ant 1.7.0,
Lucene 2.1.0 and JavaCC 3.2.0) have been extracted
and analyzed. After that ten class collaboration net-

works from Ant version 1.5.2 to version 1.7.0 have
been extracted and compared.

The main statistical characteristics of analyzed
class collaboration networks have been computed and
summarized in Table 2.

Table 2. Overall statistics for analyzed software systems

 JDK Tomcat Ant Lucene JavaCC

Number of nodes 1878 1046 778 354 79
Number of interfaces 381 139 65 17 2
Number of abstract classes 241 65 59 29 2
Number of links 12806 4646 3634 2221 274
Number of nodes without incoming links 501 264 261 126 26
Number of nodes without outgoing links 136 108 86 49 13
Number of nodes without in- and out-links 30 50 15 9 2
Max. incoming links 284 193 459 110 22
Max. outgoing links 93 61 34 30 29
Diameter 21 11 15 10 6
Max. inheritance depth 6 3 6 4 2
Total lines of code 245459 154814 93510 40904 13612

4.1. Degree Distributions

As a result of our experiments, unnormalized cu-
mulative frequency distributions Nc

in(k) and Nc
out(k)

for each extracted class collaboration network have
been computed, where Nc(k) indicates the number of
nodes in a network with degree greater than or equal
to k. Nc(k) is an unnormalized integral of the prob-
ability distribution P(k), and if P(k) ~ k –γ, then Nc(k) ~
k –γ+1 (the indefinite integral of a power function is the
power function with the exponent increased by one). A
linear function was fitted to the linear ranges of log-
log plotted distributions in order to estimate the value
of the gamma exponent. Figures 1, 2, 3, 4 and 5 show
in-coming and out-going degree distributions for JDK,
Ant, Tomcat, Lucene and JavaCC, respectively (with
values of the Pearson correlation coefficient R, and
standard deviation SD), and Table 3 lists gamma ex-
ponent values with the square of the Pearson corre-
lation coefficient (R2) for the linear fit. Gamma
exponent values for in-coming and out-going link fre-

quency distribution for JDK are similar to those
reported by Valverde and Solé [18]. This result is
significant because we used different sources for
extracting the class collaboration network – we have
done it from the source code, Valverde and Solé from
the class diagram. Linear ranges of the distributions
are followed by a faster decay at the large number of
connections (k). This phenomenon was also reported
by Myers [12] and Hyland-Wood et al. [4]. The Pear-
son correlation coefficient gives us the quality of the
linear fit. If 0.95 is taken as a minimal reliable value,
we can state a power law for the JDK in-coming, JDK
out-going, Ant in-coming, Tomcat out-going (very
close to 0.95) and JavaCC out-going link degree dis-
tributions. Other distributions can be considered as ap-
proximately power-law (R2 values are higher than
0.90, except for JavaCC where R2 is very close
to 0.90). For all analyzed networks we determined that
γout ≥ γin, except for JavaCC.

Figure 1. Unnormalized in-coming (left) and out-going (right) link frequency distributions for the JDK class collaboration

network. For the out-going link distribution we fitted a linear function for degrees greater than or equal to 10

Characteristics of Class Collaboration Networks in Large Java Software Projects

53

Figure 2. Unnormalized in-coming (left) and out-going (right) link frequency distributions for the Ant class collaboration

network. For the out-going link distribution we fitted a linear function for degrees greater than 5

Figure 3. Unnormalized in-coming (left) and out-going (right) link frequency distributions for the Tomcat class collaboration

network. For the out-going link distribution we fitted a linear function for degrees greater than 5

Figure 4. Unnormalized in-coming (left) and out-going (right) link frequency distributions for the Lucene class collaboration

network. For the out-going link distribution we fitted a linear function for degrees greater than 5

Figure 5. Unnormalized in-coming (left) and out-going (right) link frequency distributions for the JavaCC class

collaboration network

M. Savić, M. Ivanović, M. Radovanović

54

Table 3. Gamma exponents with the square of the Pearson correlation coefficient for linear fit per class collaboration network

Class collaboration network γin 2
inR γout 2

outR
JDK 2.17493 0.9541 3.63214 0.9667
Ant 2.05001 0.9927 3.93654 0.9281
Tomcat 2.35234 0.9294 3.5026 0.9499
Lucene 1.98075 0.9050 4.29761 0.9028
JavaCC 2.26362 0.8946 2.20816 0.9656

The fact that degree distributions presented in Fi-

gures 1–5 can be well approximated by power laws
tells us that the node-degree characteristic of class
collaboration networks is highly variable: there is a
broad spectrum of values it can take and statistically
significant numbers of nodes with degree which is far
from the average node degree. This degree heteroge-
neity property is discussed more deeply in Section 5.

4.2. Small-World and Clustering Coefficient

Let us denote the average number of links per node
with μ. In all analyzed networks μ is much smaller
than the total number of nodes N, which indicates that
the networks are sparse [11]. The small-world pro-
perty is very meaningful in sparse networks because,
despite large network size, there exists a relatively
short path between any pair of nodes.

A random network with given N and μ (N >> μ) is
characterized by having small values of l (small-world
coefficient) and c (clustering coefficient). For random

networks the small-world coefficient can be
approximated by lrand ~ ln(N)/ln(μ) and the clustering
coefficient by crand ~ μ/N [11].

Table 4 shows small-world and clustering coeffi-
cients for the analyzed networks, with values of small-
world and clustering coefficients for random graphs of
the same size. Small-world and clustering coefficient
values for the JDK class collaboration network are
close to those reported by Valverde and Solé [18]. As
pointed out in Section 2, the class collaboration net-
works explored in [17], [18] and [11] have small-
world coefficients approximately equal to the small-
world coefficients of random graphs of the same size,
and higher clustering coefficients. The same holds for
the class collaboration networks we analyzed, except
for the small-world values of the Ant and JavaCC
class collaboration networks. These two networks can
be considered as ultra small-worlds (lTomcat ~
ln(ln(NTomcat)) and lJavaCC ~ ln(ln(NJavaCC)). In all net-
works, c >> crand .

Table 4. Small-world and clustering coefficient values of analyzed networks with expected values for random graphs of the same
size

 #nodes #links μ/2 l lrand c crand
JDK 1878 12806 6.82 4.391 3.93 0.453 0.0036
Ant 778 3634 4.67 4.131 4.32 0.505 0.0060
Tomcat 1046 4646 4.44 1.909 4.66 0.464 0.0042
Lucene 354 2221 6.27 2.278 3.19 0.386 0.0177
JavaCC 79 274 3.47 1.220 3.52 0.437 0.0439

4.3. Evolution of the Ant Class Collaboration

Network

Ten class collaboration networks extracted from
successive versions of Ant (versions 1.5.2, 1.5.3,
1.5.4, 1.6.0, 1.6.1, 1.6.2, 1.6.3, 1.6.4, 1.6.5 and 1.7.0)
were analyzed and changes from one version to the
next version were observed. From the theoretical pers-
pective, an artificial complex network generated by
the BA model, or its modifications which employ the
preferential attachment principle, evolves into a
perfect scale-free state. Ant is the ideal candidate,
among the software systems studied in this paper, to
test whether the preferential attachment principle for
newly added nodes can explain scale-free state of
some real-world software network. Ant’s class colla-
boration network evolves from version 1.5.2 to ver-
sion 1.7.0 into almost perfect scale-free state: a power
law nearly ideally fits Ant’s complementary cumu-

lative incoming degree distribution in version 1.7.0
(see Figure 2, left).

From version 1.5.2 to version 1.5.4 modifications
in the class collaboration network structure were mi-
nor. All three networks have the same nodes (there
were no new classes or interfaces added, and nothing
was removed from the project), but the 1.5.3 network
has three new links with respect to 1.5.2, and 1.5.4 has
one more link than 1.5.3. We detected the first massive
change in class collaboration network structure in the
transition from version 1.5.4 to version 1.6.0. In 1.6.0
there exist 114 new nodes which did not exist in the
1.5.4 network. Ten of them are new interfaces and 104
are new classes. All nodes from the 1.5.4 network re-
main in the 1.6.0 network (nothing was deleted). In
Figure 6 (left) we plot the series of pairs (xk, yk) for
each node in the 1.5.4 network, where xk represents
the number of in-coming links for node k in network

Characteristics of Class Collaboration Networks in Large Java Software Projects

55

1.5.4 and yk the number of newly attached in-coming
links by nodes that are added as new in the 1.6.0 net-
work (which do not exist in the 1.5.4 network). This
chart shows that nodes which had higher in-coming
link degree in the 1.5.4 network received more in-
coming links from nodes added in version 1.6.0 than
those with smaller in-coming link degrees. The node
org.apache.tools.ant.BuildException, which has
336 in-coming links in the 1.5.4 network (the node
with the highest in-coming link degree) received 63
new in-coming links by newly introduced nodes
(which is the highest number of newly added in-

coming links to one node). Similar behavior was
observed at the node with the second largest in-degree
(org.apache.tools.ant.Project – in the 1.5.4 network
it has 220 in-coming links, receiving 43 links from
nodes which appeared in the 1.6.0 network), and with
the third largest as well (org.apache.tools.ant.Task
– in the 1.5.4 network it has 124 in-coming links).
These three nodes are the three most preferential
nodes viewed from the perspective of the Barabási-
Albert model (having the highest in-coming link
degree) and they received the most in-coming links
from nodes added in the new version of the software.

Figure 6. Left: Plot of series of pairs (xk, yk) for each node in the Ant 1.5.4 network, where xk represents the number of in-coming

links for node k in network 1.5.4 and yk the number of newly attached in-coming links by nodes that were added as new
in the 1.6.0 network. Right: Analogous plot for the version transition from 1.6.5 to 1.7.0

Changes in the structure of the class collaboration
network from version 1.6.0 to 1.6.1 were not drastic.
Four nodes and 18 links were added to the network.
All nodes in 1.6.0 appear also in 1.6.1 (nothing was
deleted). Seventeen links out of 18 new ones are
attached as in-coming links to 1.6.0 nodes. Most of
them are distributed to the preferential nodes
(BuildException, Project /the two nodes with highest
in-degree/, org.apache.tools.ant.types.Command-
line and org.apache.tools.ant.taskdefs.Execute).

Version 1.6.2 brings 16 new nodes and 75 new
links, but only 27 links (out of 75) are links from new
nodes to the old ones. Most of them again point to the
preferential nodes: BuildException (7), Project (4)
and Task (4).

Version 1.6.3 brings 20 new nodes and 141 new
links. Eighty-seven (out of 141) are interesting – the
ones that point to the old nodes from the new nodes.
The largest numbers of in-coming links were assigned
to classes that had the largest number of in-coming
links before adding new nodes (BuildException, 17
new in-coming links). Thirty-six links were attached
to the 16 nodes that have an in-coming link degree
higher than ten, 21 to the 20 nodes that have incoming
link degree higher than or equal to 5, and 13 to the 7
nodes that have an in-coming link degree less than 5.

The class collaboration network extracted from
version 1.6.4 has minor differences to the extracted

collaboration network from the previous version
(1.6.3): both have the same nodes, two new links are
present in the 1.6.4 network.

Version 1.7.0 brings big structural changes in the
class collaboration network. There are 132 new nodes,
and for the first time some nodes from the previous
collaboration network were deleted (44 of them). The
total number of new links is 634, 129 pointing from
some new node to some new node, 144 from some old
node to another old node, and 361 from some new
node to some old node. Figure 6 (right) plots the series
of pairs (xk, yk) for each node in the 1.6.5 network,
where xk represents the number of in-coming links for
node k in network 1.6.5, and yk the number of newly
attached in-coming links from nodes that are added as
new in the 1.7.0 network. As in the case of the 1.5.4 to
1.6.0 version transition (depicted in Figure 6, left), in
Figure 6 (right) we observe that the two nodes with
the highest in-coming link degree (BuildException
and Project) received the most in-coming links.

The same type of real-world network analysis pre-
sented here can be performed on other software sys-
tems as well, and possible evidence of preferential
attachment would suggest that this principle is tolerant
to small fluctuations from perfect scale-free state in
class collaboration network structure.

M. Savić, M. Ivanović, M. Radovanović

56

5. Implications on Software Engineering

In the previous section we showed that extracted
class collaboration networks from selected Java soft-
ware projects are scale-free, or approximately scale-
free. This result has both theoretical and practical va-
lues. First of all, it suggests that similar organization
principles are the foundation for the evolution of
software systems and other complex networks, such as
social and biological networks, which also have the
scale-free property [1]. This implies that the study of
complex networks, in general, can be a useful heuris-
tic to understand structural complexity and evolution
of software systems.

Based on the scale-free property of the class colla-
boration network, important classes/interfaces in a
large Java software system can be identified. The most
prominent feature of a scale-free network is the
power-law degree distribution. The direct effect of a
power-law distribution in Java class collaboration net-
works is that there are a few classes/interfaces with a
much larger number of connections (high in-coming

or out-going node degree) to other classes/interfaces
compared to the average. As noted by Myers [12], a
high in-degree typically results from code reuse. It is
very difficult to change highly reused classes/inter-
faces because of their importance for the stability of
the system [18]. A high number of outgoing links indi-
cates that a class has a high degree of aggregation, and
nodes with small out-degree are generally simple,
since they do not aggregate other classes [12].

In our study we identified top ten highest in-degree
and out-degree classes/interfaces in JDK. They are
shown in Tables 5 and 6, respectively. As can be seen,
classes java.awt.Component and javax.swing.
JComponent are in the top ten classes by both in-
degree and out-degree, which means that these classes
exhibit a high degree of reuse and aggregation at the
same time. These two classes have both significant in-
ternal complexity (due to aggregating the behavior of
several other classes) and significant external respon-
sibility (because they are used in a lot of other classes
in the system).

Table 5. Top ten highest in-degree nodes in JDK

Class name #InLinks #OutLinks PageRank LOC Cp
java.io.IOException 284 0 0.0416 10 0
java.io.Serializable 279 0 0.484 3 0
java.awt.Component 226 76 0.0087 2489 734292275264
java.awt.Graphics 225 11 0.0055 163 998476875
java.awt.Rectangle 208 5 0.0064 243 262828800
javax.swing.JComponent 205 68 0.004 2045 397391762000
java.awt.Dimension 187 2 0.0051 56 7833056
java.util.Vector 174 7 0.0044 332 477694728
javax.swing.plaf.ComponentUI 169 7 0.0051 45 62977005
java.awt.Color 157 15 0.0029 452 2506803300

Table 6. Top ten highest out-degree nodes in JDK

Class name #OutLinks #InLinks PageRank LOC Cp
java.awt.Toolkit 93 25 0.002 595 3216346875
java.awt.Component 76 226 0.0087 2489 734292275264
javax.swing.JTable 75 7 0.0002 2549 702568125
javax.swing.text.JtextComponent 71 40 0.0006 1498 12082268800
javax.swing.JComponent 68 205 0.004 2045 397391762000
javax.swing.text.html.HTMLEditorKit 67 6 0.0001 972 157079088
javax.swing.plaf.basic.BasicTreeUI 60 3 0.0001 2324 75297600
javax.swing.JEditorPane 56 10 0.0001 1047 328339200
javax.swing.JTree 50 8 0.0003 2208 353280000
javax.swing.AbstractButton 49 33 0.0007 1145 2993818905

It is interesting to observe that in-degree and out-

degree measures are very similar to the information-
flow metrics defined by Henry and Kafura [3]: fan-in
(the number of other functions calling a given function
in a module) and fan-out (the number of other func-
tions being called from a given function in a module).
Actually, in-degree and out-degree are fan-in and fan-

out analogues at the class collaboration level. Henry
and Kafura [3] defined a complexity metric Cp calcu-
lated as LOC · (fan-in · fan-out)2, where LOC repre-
sents the number of lines of code in a software entity.
According to Zimmermann et al. [21], components
with a large fan-in and fan-out may indicate poor de-
sign and such modules have to be decomposed

Characteristics of Class Collaboration Networks in Large Java Software Projects

57

correctly. If Cp for the class is defined as LOC · (in-
degree · out-degree)2 then, in the JDK case, two clas-
ses with the highest complexity are java.awt.Compo-
nent and javax.swing.JComponent, and their Cp is
at least one order of magnitude higher than others (Cp
values for the top ten in-degree/out-degree nodes are
shown in Tables 5 and 6).

One important aspect of scale-free networks is
their robustness to damage [1]. In the case of software
systems with scale-free topology at the class collabo-
ration level this means that random errors may not
cause major crashes of the whole system. This can
explain why many large software systems can function
properly most of the time even with software defects.
However, if errors happen within classes that have
high in-coming degree (classes with significant exter-
nal responsibility), this can cause the whole system to
fail. On this basis Potanin et al. [13] suggested that by
concentrating debugging methodologies on such well-
connected classes, rather than the small ones, software
engineers may be able to improve the reliability of
code more efficiently. The idea is simple: first elimi-
nate bugs from the classes that have major impact on
the system stability, then deal with other classes. The
first step of this debugging approach is to identify
classes that have highest in-coming degree. Therefore,
in the JDK case, classes from the top ten list will be
tested first. We can see that in the top ten list we have
classes/interfaces with a high number of in-coming
links and small number of out-going links (for
example, java.io.IOException is the most reused
class and java.io.Serializable the most implemented
interface, both entities are without out-going links –
no aggregation, having 10 and 3 lines of code,
respectively, Cp = 0 for both entities). These entities
are quite simple and do not use other components, so
with a little effort it can be determined if they are
functioning properly. On the other side, we can see in
the top ten list the classes with high in-degree and
high out-degree at the same time (already mentioned
java.awt.Component and javax.swing.JCompo-
nent). In order to validate these classes, all classes
used by them must be previously validated. Obviously,
classes with higher values of the Cp are “problematic”
(in the sense of having higher priority) in the debug-
ging strategy described above.

One of the recognized principles to follow in soft-
ware development is the principle of efficient commu-
nication among software entities at low cost, that is, a
software system should have a relatively average shor-
test path length [10]. In other words, transport of in-
formation between classes is more efficient when the
small-world coefficient of the class collaboration
network is smaller. In this research we showed that all
analyzed class-collaboration networks have the small-
world property. It is interesting that we found two
networks with the ultra small-world property: Tomcat
and JavaCC. Cohen and Havlin [2] showed that the
lower bound on the small-world coefficient of any
scale-free network with gamma exponent greater than

2 is of the order of ln(ln(N)) (N is the number of nodes
in the network). Class collaboration networks of Tom-
cat and JavaCC can be considered as approximately
scale-free and both have gamma-in/gamma-out expo-
nents greater than 2 (see Table 3). This means that this
principle of efficient communication at low cost is
maximized in those Java projects.

In Section 4.3 we described the evolution of the
Ant class collaboration network extracted from ver-
sion 1.5.2 to version 1.7.0. Our motivation for this
analysis was to check the preferential attachment
hypothesis introduced by the Barabási-Albert model,
in order to determine whether that hypothesis can mo-
del the evolution of the Ant software system at the
structural level. The BA model states two conditions
for a scale-free topology. The first is that the network
is growing. If, for example, we observe the 1.5.4 to
1.6.0 network transition, we will see that 104 nodes
were added to network 1.5.4 which results in network
1.6.0, therefore this first condition of the BA model is
satisfied. The second condition of the BA model is
that nodes with a higher in-coming link degree have a
higher probability of receiving an in-coming link from
newly introduced nodes than nodes with a lower in-
coming link degree. In the Ant class collaboration
network’s transition from version 1.5.4 to version
1.6.0 we have the situation that the highest in-coming
link degree nodes (classes org.apache.tools.ant.
BuildException, org.apache.tools.ant.Project and
org.apache.tools.ant.Task) received the most in-
coming links by newly added nodes, thus the second
condition of the BA model is also satisfied. Similar
behavior can be detected in the transitions 1.6.0–1.6.1,
1.6.1–1.6.2, 1.6.2–1.6.3 and 1.6.5–1.7.0. We can con-
clude that the Barabási-Albert concept of preferential
attachment can successfully model the structural
changes in the Ant class collaboration network.

However, the BA model has two disadvantages in
order to be a good predictive model for software evo-
lution at the structural level. First, it generates scale-
free topology with gamma exponent that has a cons-
tant value 3. Second, it cannot produce hierarchical
structures [12]. This is very important because it was
observed that engineered design leads to hierarchical
structures [15]. Our future work will be focused on
extending the BA model (making a new model on the
basis of the preferential attachment hypothesis) in
order to facilitate these two capabilities.

6. Conclusion and Future Work

This paper investigated statistical properties (de-
gree distributions, small-world and clustering coeffi-
cients) of class collaboration networks formed in five
large Java software projects (JDK, Ant, Tomcat, Lu-
cene and JavaCC) and showed that these networks
exhibited scale-free or nearly scale-free and small-
world properties, while for Tomcat and JavaCC we
detected the ultra small-world property. Furthermore,
we showed that the clustering coefficient value of all

M. Savić, M. Ivanović, M. Radovanović

58

examined networks is significantly larger than the
clustering coefficient value for the random graph of
the same size. Pure topological properties and pheno-
mena that were detected enabled us to derive impli-
cations related to practical software engineering issues
in several aspects: identification of classes important
to software stability and evolution; Henry-Kafura met-
rics and their relation to problems with the software
testing strategy proposed in [13]; detection of maxi-
mal utilization of the communication efficiency
principle. The first two aspects were discussed with
regards to the JDK class collaboration network, and
the last one from the perspective of class collaboration
networks with scale-free and ultra small-world pro-
perties.

In order to check the preferential attachment rule
of the BA model, we captured class collaboration net-
works from ten successive versions of Ant, and ana-
lyzed changes in network structure. Results show that
nodes with higher in-coming link degree receive more
in-coming links from new nodes than others. This
means that the preferential attachment concept intro-
duced in the BA model can explain structural changes
in the Ant’s class collaboration network and provide
clues about how the network evolved into a scale-free
state (the state that was identified by observed degree
distributions that follow the power law). On the other
hand, the BA model is incapable of generating hierar-
chical structures, which is clearly relevant for software
design. Our future work will include an investigation
of class collaboration network evolution in other large
Java software projects with more evolutionary steps,
in order to obtain further empirical evidence of soft-
ware evolution at collaboration (structural) level, and
defining a model that incorporates the preferential at-
tachment concept with the capability of generating
hierarchical structures.

Acknowledgments

The authors gratefully acknowledge the support of
this work by the Serbian Ministry of Science and
Technological Development through project Intelli-
gent Techniques and Their Integration into Wide-
Spectrum Decision Support, no. OI174023. The
authors would also like to thank the anonymous revie-
wers for their valuable comments.

References
 [1] R. Albert, A.-L. Barabási. Statistical mechanics of

complex networks. Rev. Mod. Phys., 74, 2002, 47–97.
 [2] R. Cohen, S. Havlin. Scale-free networks are ultra-

small. Phys. Rev. Lett., 90, 2003, 058701.
 [3] S.M. Henry, D.G. Kafura. Software structure metrics

based on information flow. IEEE T. Software Eng., 7,
1981, 510–518.

 [4] D. Hyland-Wood, D. Carrington, S. Kaplan. Scale-
free nature of Java software package, class and method
collaboration graphs. Technical report no.TR-MS1286,

MIND Laboratory, University of Maryland College
Park, 2006.

 [5] JavaCC. javacc: JavaCC Home, 2010.
https://javacc.dev.java.net/.

 [6] Jung. JUNG: Java Universal Network/Graph Frame-
work, 2010. http://jung.sourceforge.net/.

 [7] N. La Belle, E. Wallingford. Inter-package depen-
dency networks in open-source software. Proc. 6th Int.
Conf. on Complex Systems (ICCS), 2006, paper no.
226.

 [8] J. Liu, K. He, Y. Ma, R. Peng. Scale free in software
metrics. Proc. 30th Annual Int. Computer Software
and Applications Conf. (COMPSAC), 2006, 229–235.

 [9] Y. Ma, K. He, D. Du, J. Liu, Y. Yan. A complexity
metrics set for large-scale object-oriented software
systems. Proc. 6th IEEE Int. Conf. on Computer and
Information Technology (CIT), 2006, 189–194.

[10] Y. Ma, K. He, D. Du, J. Liu. Network motifs in
object-oriented software systems. Dyn. Contin. Dis-
cret. Impuls. Syst. Ser. B: Appl. Algorithms, 14(S6),
2007, 166–172.

[11] A.P. de Moura, Y.C. Lay, A.E. Motter. Signatures
of small-world and scale-free properties in large com-
puter programs. Phys. Rev. E, 68, 2003, 017102.

[12] C.-R. Myers. Software systems as complex networks:
Structure, function and evolvability of software colla-
boration graphs. Phys. Rev. E, 68, 2003, 046116.

[13] A. Potanin, J. Noble, M. Frean, R. Biddle. Scale-
free geometry in object-oriented programs. Commun.
ACM, 48(5), 2005, 99–103.

[14] D. Puppin, F. Silvestri. The social network of Java
classes. Proc. 2006 ACM Symposium on Applied com-
puting (SAC), 2006, 1409–1413.

[15] R.V. Solé, R. Ferrer Cancho, J.M. Montoya, S. Val-
verde. Selection, tinkering, and emergence in complex
networks, Complexity, 8, 2003, 20–33.

[16] J. Sudeikat, W. Renz. On complex networks in soft-
ware: How agent-orientation effects software struc-
tures. Proc. 5th Int. Central and Eastern European
Conf. on Multi-Agent Systems (CEEMAS), Lect. Notes
Comput. Sc., 4696, 2007, 215–224.

[17] S. Valverde, R. Ferrer Cancho, R.V. Solé. Scale-
free networks from optimal design. Europhys. Lett.,
60, 2002, 512–517.

[18] S. Valverde, R.V. Solé. Hierarchical small-worlds in
software architecture. Dyn. Contin. Discret. Impuls.
Syst. Ser. B: Appl. Algorithms, 14(S6), 2007, 1–11.

[19] R. Wheeldon, S. Counsell. Power law distributions in
class relationships. Proc. 3rd IEEE Int. Workshop on
Source Code Analysis and Manipulation (SCAM),
2003, 45–54.

[20] P. Yuan, H. Jin, K. Deng, Q. Chen. Analyzing soft-
ware component graphs of grid middleware: Hint to
performance improvement. Proc. 8th Int. Conf. on
Algorithms and Architectures for Parallel Processing
(ICA3PP), Lect. Notes Comput. Sc., 5022, 2008, 305–
315.

[21] T. Zimmermann, N. Nagappan, A. Zeller. Predic-
ting bugs from history. In T. Mens, S. Demeyer (Eds.),
Software Evolution, Springer, 2008, 69–88.

Received July 2010.

