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Abstract. In this paper problem for converting a circular arc into cubic Bezier arc and approximation of 
cubic Bezier curve by a set of circular arcs are discussed. These questions occur in CAD/CAM systems 
during data exchange from data formats which support Bezier curves or during data exchange into data 
formats, which do not support Bezier curves. Some simple and practical solutions are proposed. An algo-
rithm for approximation of a cubic Bezier curve and the results of its testing are presented. 
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1. Introduction 

Despite the fact that different CAD/CAM systems 
perform different layout editing operations and have 
some specific tasks (calculation of insulate channels, 
shape manipulation operations and so on), all they 
have some common features – they can import data in 
various data formats and later export the results in 
various data formats as well. These data formats 
(Gerber, GerberX, PDF, DXF, HPGL, ODB++, ISO 
10303-210 and others) are standardized, but here is 
one big problem in the data interchange between them 
– not all curve types are supported in these formats.  

There are no problems with the standard shape 
primitives like circle and rectangle. But shapes with 
arcs (open curve, closed curve, polygon) in some data 
formats have a few representations. A standard arc 
representation usually has coordinates of an arc start 
and end points and information about its center point 
(either as incremental distance from the arc start point 
as in Gerber format or center point coordinates as in 
PDF). The DXF, ODB++ and ISO 10303-210 formats 
additionally support the arc representation as Bezier 
curve. So, while performing the import/export opera-
tions in various formats we have to convert curves 
with standard circular arcs into curves with Bezier 
arcs and vice versa. 

A cubic Bezier curve can approximate a circle but 
not perfectly fit a circle. A standard approach is to 
split a circle into four separate arcs. Errors of the ap-
proximation of a quarter of the circle (90 degree circu-
lar arc) have been analyzed in [3].  

Approximation of cubic Bezier curve by a curve 
with circular arcs is a much more complicated task. 

An algorithm for a cubic Bezier spiral (a curve whose 
curvature varies monotonically with arc-length) appro-
ximation is given in [7]. The algorithm is based on the 
recursive subdivision of the cubic Bezier spiral. But, 
in general, a Bezier curve is not naturally curvature 
continuous. It also can have cusps, loops and inflec-
tion points. In [7], the subdivision is performed at the 
point of maximum deviation of the spiral from the 
approximating biarc. In this paper, a few other subdi-
vision techniques are proposed and their experimental 
characteristics are presented. The goal is to achieve 
the minimum number of approximating arcs.  

The paper is organized as follows. Section 2 gives 
an introduction into Bezier curves – lists their main 
properties and subdivision techniques. Section 3 ana-
lyzes problems for converting a circular arc into cubic 
Bezier arc (arcs). Universal control points equations 
for an arbitrary circular arc up to 90 degree are pre-
sented. Section 4 investigates an inverse problem – 
approximation of cubic Bezier arc by a set of circular 
arcs. An algorithm for approximating a cubic Bezier 
arc with nondecreasing curvature is described and ex-
perimental comparison of six different subdivision 
strategies, developed for this approximation algo-
rithm, are presented in Section 5. Finally, the paper is 
ended by some concluding remarks. 

2. Bezier curves 

Bezier curves were originally introduced by Paul 
de Casteljau in 1959. But they became a famous shape 
only when Pierre Bezier, French engineer at Renault, 
used them to design automobiles in the 1970's. Bezier 
curves are now widely used in many fields such as 
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S2 = (P2+P3)/4+S3/2  industrial and computer-aided design, vector-based 
drawing, font design (especially in PostScript font) 
and 3D modeling.  

R4 = (R3+S2)/2  
S4 = P4 . 

 The most commonly used Bezier curves of third 
order are fully defined by four points: two endpoints 
(P1, P4) and two control points (P2, P3). The control 
points do not lie on the curve itself but define its shape 
[2, 8]. The curve, shown in Figure 1, starts at P1, goes 
toward P2 and arrives at P4 coming from the direction 
of P3. 

 

 

Figure 2. Illustration of the De Casteljau algorithm 

It is clear that the piecewise linear approximation 
P1, R2, R3, R4, S2, S3, P4, obtained after one such 
subdivision is a better approximation to the curve 
shape than the original control polygon P1, P2, P3, P4. 
If this subdivision process is continued, then the 
piecewise linear polygon eventually collapses onto the 
curve. So, the cubic Bezier curve will be drawn.  

Figure 1. Cubic Bezier curve 

In general, it will not pass through P2 or P3. Such a 
curve is called cubic Bezier curve. Its equation is [8]: 

B(t) = (1-t)3P1 + 3t(1-t)2P2 + 3t2(1-t)P3 + t3P4  (1) 

Bezier equations are parametric equations in vari-
able t, and are symmetrical with respect to x and y. 

The subdivision can be successfully applied for 
splitting an original cubic Bezier curve at any point 
(the split point is on the curve) and calculating control 
points for both new cubic Bezier curves.  

The parameter t, varying in interval [0, 1], cuts the 
segment P1-P4 into intervals, according to the wanted 
accuracy. When t = 0, the result is B(0) = P1. For t = 1, 
the result is B(1) = P4.  

Let us set the parameter t to any value k from the 
interval [0, ..., k, ..., 1]. Suppose that the C is corres-
ponding sub-division point of the cubic Bezier curve. 
According to (1), we have P1 = B(0), P4 = B(1) and C 
= B(k). So, the resulting Bezier curves are P1, R2, R3, 
C and C, S2, S3, P4, where their control points are:  

The Bezier curve is tangent to the segment of line 
P1 -P2 at the start and P3 -P4 at the end. The curve 
remains within the convex hull of the control points. 

A possible approach, useful when dealing with the 
problem of converting a Bezier arc into 1 circular arc 
or set of circular arcs, is to sub-divide the Bezier curve 
into two sections and in each section approximate the 
curve by its control polygon. This process can be 
repeated on each sub-section until the control polygon 
for a sub-section is within some tolerance. The subdi-
vision algorithm was devised in 1959 by Paul de 
Casteljau and is referred to as the de Casteljau algo-
rithm [2, 8] (it is sometimes known as the geometric 
construction algorithm). 

R2 =P1+k*(P2-P1)  
S3 = P3 +k* (P4-P3)  
R3 = R2 +k* ((P2 + k*(P3-P2))-R2)  
S2 = T + k*(S`-(P2 + k*(P3-P2))).  

3. Converting a circular arc into Bezier arc 

It is impossible to draw an absolutely exact circle 
with one Bezier curve. But we can approximate a unit 
quarter of a circle (900 arc) by a cubic Bezier curve 
with an error 1.96×10-4 in the radius [3], what is ac-
ceptable for most practical cases. 

Let us consider the De Casteljau algorithm. Sup-
pose that a cubic Bezier curve, defined over the para-
meter interval [0, 1], is divided into two new cubic 
Bezier curves with corresponding parameter intervals 
[0, ½] and [½, 1]. This means that, from the original 
control points P1 to P4, we obtain new control points 
R1 to R4 and S1 to S4 of two Bezier curve segments that 
together make up the original curve. This process is 
illustrated in Figure 2.  

The approximation of a circle with four cubic 
Bezier curves is widely described in books for curves 
and surfaces (e.g., [8]) and in popular articles in 
internet (e.g., [5]). To approximate, one should divide 
the circle into four arcs as it is shown in Figure 3 and 
convert each of them separately. 

Let us consider only the upper right segment (the 
arc from point A to point B) shown in Figure 3, 
because we can convert other segments in the similar 
way (only some values will be negative). Since the 
angle AOB is of 90 degrees, the Bezier control line 
AA' is horizontal, and the Bezier control line BB' is 
vertical. The radius r of the circle is equal to the 

The new control points are obtained as follows:  
R1 = P1  
S1 = R4  
R2 = (P1+P2)/2  
R3 = R2/2+(P2+P3)/4  
S3 = (P3 + P4)/2  
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length of the lines OA, OB, as well as OC. The point C 
is on the middle of the arc AB, so the angles AOC and 
COB equal 45 degrees. The length d of AA' and BB' is 
unknown, however, it can be expressed as d = r * k, 
where k is a constant (in the literature this constant 
very often is called as “magic number”). 

 
Figure 3. A quarter of a circle 

Let us assume that r = 1 and the coordinates of the 
center point O = [0, 0]. In this case, d = k, so the 
coordinates of the four points, defining the Bezier 
curve, are: 
 A  = [0, 1] 
 A' = [k, 1] 

 B'  = [1, k]  (2) 
 B  = [1, 0] . 
From the definition of the cubic Bezier curve (1), we 
have: 
      C(t) = (1-t)3 A + 3t(1-t)2A' + 3t2(1-t)B' + t3B 

Since the point C lies at t = 0.5, (1-t) = 0.5 and the 
x coordinate of C equals the y coordinate of C, we can 
write the following two equations for C: 

C = 
8
1 A + 

8
3 A' + 

8
3 B' + 

8
1 B , (3) 

C = 2/1  = 2 / 2 . (4) 

Solving the equations (3), (4) and (2) for C on the 
x axis (the same result would be for y axis as well) we 
obtain: 

8
0  + 

8
3 k1 + 

8
3  +

8
1  = 2 / 2 

k = 
3
4 ( 2 – 1) = 0.5522847498. (5) 

So, the control points of the cubic Bezier curve for 
the upper right arc of a circle with radius r are: 

A  = [0, r] 
A' = [r*k, r] 
B' = [r, r*k] (6) 
B  = [r, 0]. 
Consider an arc of less than 90 degree and radius r. 

Assume that we have to approximate it by one 
segment of a cubic Bezier curve. As shown in Figure 
4, the CW (clockwise) arc is centered along the 
positive x axis. The resulting Bezier curve connects P1 
and P4 and its boundary tangents are collinear with the 

vectors (P1 – P2) at the start point and (P4 - P3) at the 
end point. The variation of tangent magnitude L is 
within the domain [0, R*tan(ϕ)], where ϕ is half the 
angular width of the arc segment [4], i.e. ϕ = β/2. We 
need to calculate the coordinates of the control points 
P2 and P3.   

 
Figure 4. A CW arc centered along the positive x axis 

Let the coordinates of the arc start point P1 and end 
point P4 be (x1, y1) and (x4, y4), respectively. Then, 
from the elementary geometry, the coordinates of the 
cubic Bezier control points are: 

x2 = x1 + k*R*sin(ϕ)    
y2 = y1 – k*R*cos(ϕ) (7) 
x3 = x4 + k*R*sin(ϕ) 
y3 = y4 + k*R*cos(ϕ). 
For an arbitrarily positioned circle, operations of 

rotation, scaling and transformations are used. 
As it was shown in [3], an approximation error in 

the radius varies from 1.96×10−4 to 2.73×10−4. In [3], 
it is mentioned that the magic number 0.55191496 
provides the minimum error, the 0.55228475 value 
provides the maximum error. 

By using a combined numerical and analytical ap-
proach, [4] made a conclusion that the least error 
occurs at three locations of a Bezier approximation 
curve – one is at t = 0.5 and the other two are sym-
metric to the mid-point of the curve (t = 0.18 and t = 
0.82).  

Another approach to finding Bezier control points, 
when the angle ϕ directly does not participate in the 
calculation of the magic number, could be as follows. 
Let the coordinates of the arc start point P1, arc end 
point P4 and arc center point C be (x1, y1), (x4, y4) 
and (xc, yc), respectively. Then: 

ax = x1 – xc 
ay = y1 – yc 
bx = x4 – xc 
by = y4 – yc 
q1 = ax*ax + ay*ay 
q2 = q1 + ax*bx + ay*by 

k2 = 
3
4 ( 2*1*2 qq – q2) / (ax*by – ay*bx). (8)  

The resulting coordinates of the Bezier control 
points P2 and P3 are: 

x2 = xc + x1 – k2*y1, 
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y2 =yc + y1 + k2*x1, 
x3 = xc + x4 – k2*y4, (9) 
y3 =yc + y4 + k2*x4. 
The advantage of (9) is that control points P2 and 

P3 are in absolute coordinates and any rotations and 
transformations are already not needed. For a 
counterclockwise arc, the value of k2 is positive, for 
clockwise arc, it is negative. The correctness of the 
proposed approach for calculation of k2 and control 
points P2, P3 was tested using the LPKF CircuitCAM 
software [10]. An absolute value of k2 for 30, 45, 60 
and 90 degree arcs was 0.175534, 0.265216, 0.357259 
and 0.552284, respectively. An analysis of the 
approximation errors using (8) is out of the scope of 
this article.  

4.  Approximation of Bezier curve by circular 
arcs  

An algorithm for a cubic Bezier spiral approxi-
mation by circular arcs is given in [7].  The spiral is a 
planar cubic Bezier curve segment whose curvature 
varies monotonically with arc-length (it does not have 
cusps, loops and inflection points).  

The algorithm is based on the recursive subdi-
vision of the cubic Bezier spiral at point of maximum 
deviation of the spiral from the approximation biarc 
within a given tolerance. The biarc (a pair of circular 
arcs) is constructed as follows [7]: 
• extend the  tangent vector from Bezier start point 

P1, extend the tangent vector from Bezier end 
point P4 and find their intersection point V; 

• calculate an incentre point G of the triangle (P1, V, 
P4), which defines the biarc (the incentre is the 
centre of the inscribed circle which touches the 
three sides of the triangle);  

• the biarc joining point G lies on the circle that 
passes through  P1, G and P4. 

Figure 5 illustrates the triangle (P1, V, P4), its in-
centre point G and biarc. 

 
Figure 5. Bezier curve and its biarc 

The deviation is measured along a radial direction 
of the biarc. For 0.0001 mm tolerance, the maximum 
deviation is 0.97×10−4. 

Unfortunately, Bezier curve is not naturally cur-
vature continuous. The curves, which are used in 
CAD/CAM systems for manufacturing of modern 
printed circuit boards (PCB), usually are composed of 

arcs and straight-line segments. Not only a curvature 
of each arc can be equal to a different constant, but the 
curvature does not vary monotonically within one arc-
length. Approximation of cubic Bezier curves, which 
are circulars arc by nature, does not create problems – 
the Bezier arcs are convex. But data, imported from 
the formats, which support Bezier curves or Bezier 
curves, which were modified in CAD/CAM systems 
during layout editing operations, cause some approxi-
mation problems. First, the angle of biarc of Bezier arc 
can be more than 90 degrees. Second, a Bezier curve 
can have cusps, loops and inflection points. Third, it 
can be quadratic, cubic or even higher degree Bezier 
curve. As regards the quadratic Bezier curves, their 
approximation is quite thoroughly investigated in [1, 
6, 9]. According to [9], an arbitrary quadratic Bezier 
curve either has monotone curvature, or can be 
divided into two quadratic Bezier curve segments with 
monotone curvature, respectively. An algorithm for 
approximation of an arbitrary quadratic Bezier curve 
by arc splines is presented in [1] as well. 

A full algorithm for approximating of an arbitrary 
cubic Bezier curve into curve with a set of circular 
arcs can be described as follows. 

Step 1:  
1) set the flag fCurvatureChanged = false; 
2) set the flag fFirstSegment = true; 
3) follow a current Bezier curve from its start 
point  and find a point C where its curvature 
changes (convex segment changes into concave 
or vice versa); 
4) if the point C was found, than go to Step 2. 
5) current Bezier = entire Bezier curve; 
    go to Step 3. 

Step 2:  
1) set fCurvatureChanged = true; 
2) subdivide the Bezier curve at the point C; 
3) current Bezier = first Bezier curve.  

Step 3: Get the angle of the biarc of current 
Bezier arc.  
If the angle is less than or equal to 900 , than go 
to Step 6.  

Step 4: If the angle of the biarc is less than or 
equal to 1800 then:  
1) subdivide the Bezier curve in two equal pats; 
2) current Bezier  = first Bezier; 
3) set the flag fFirstSegment = true; 
4) go to Step 6. 

Step 5: The angle of the biarc is more than 1800 . 
1)Subdivide the Bezier curve in such a way that 
the first (current) Bezier curve would be the first 
900 degree biarc segment.  
2) set the flag fFirstSegment = true. 
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S1-middle point: The subdivision point is the 
middle point within the interval [0, 1], i.e., t = 0.5. Step 6: Approximate the current Bezier curve by 

a set of circular arcs with given tolerance. 

Step 7: If Step 5 was executed then: 
1) current Bezier = second Bezier curve; 
2) go to Step 3. 

Step 8: If Step 4 was executed but Step 5 was 
skipped then: 
1) current Bezier = second Bezier curve; 
2) set fFirstSegment = false; 
3) go to Step 6. 

Step 9: If fCurvatureChanged = true then: 
1) current Bezier = second Bezier curve; 
2) set the flag fCurvatureChanged = false; 
3) set the flag fFirstSegment = true; 
4) go to Step 3. 

Step 10: Stop. 

S2-cutting point: The subdivision point is a point 
where the Bezier curve intersects the approximation 
arc. If intersection did not occur, then t =0.5. 

S3-max error: The subdivision point is a point 
where the Bezier curve’s deviation from the 
approximation arc, measured along a radial direction 
of the arc, is maximum.   
Note: This strategy within the approach A2 corres-
ponds to the strategy used in [7]. 

S4-min error: The subdivision point is a point 
where the Bezier curve’s deviation from the appro-
ximation arc, measured along a radial direction of the 
arc, already exceeds the given tolerance. 

S5-incentre point: The subdivision point is a point 
where the straight line through the approximation arc 
center point and biarc joining point G intersects the 
Bezier curve. 

Obviously, the core of the algorithm is Step 6 - 
“Approximate the current Bezier curve by a set of 
circular arcs with given tolerance”. As it was 
mentioned before, in the [7] a curve is split at the 
point of maximum deviation of the spiral from the 
approximating biarc. The deviation is measured along 
a radial direction of the biarc. We propose five 
approximation strategies (S1-S5) arbitrary (not only 
spiral) cubic Bezier curves.  

5. Computational experiments 

We programmed and tested all five presented ap-
proximation strategies (S1-S5) in both A1 and A2 
approximation arc calculation approaches. The experi-
ment was done using the LPKF CircuitCAM software 
[10].  

Tables 1 and 2 show the main characteristics of the 
Bezier curve approximation – the number of circular 
arcs and the maximum deviation from given tolerance 
– for Bezier curve, depicted in Figure 6 (unit of 
measurement for tolerance and deviation is mm). This 
initial cubic Bezier curve was defined by points 
P1=(16.9753, 0.7421), P2=(18.2203, 2.2238), P3= 
(21.0939, 2.4017), P4=(23.1643, 1.6148). 

All these strategies have the same basis: when the 
maximum deviation of the cubic Bezier curve from 
the approximating circular arc exceeds a given tole-
rance, than the Bezier curve is subdivided into two 
Bezier curves and the approximation algorithm is re-
cursively used for both new Bezier curves. The diffe-
rences are only in calculation of approximation arc 
(arc center point and radius) and in selection of the 
subdivision point (value of parameter t from interval 
[0, 1]).  

 
The following two different approaches in calcu-

lation of the approximation arc were used: 
Figure 6. Bezier curve and its circular arcs A1-middle point: The approximation arc starts at 

the Bezier start point P1, goes through Bezier 
“middle point” M and ends at Bezier end point P4. 
According to equation (1), P1 = B(0),  M = B(0.5), 
P4 = B(1).   
Note. Our algorithm for approximation Steps 3 to 5 
uses the biarc angle. Instead of this the approxi-
mation arc angle can be used as well. 

The initial angle of the arc approximating Bezier 
curve is 65 degrees (less than 90) and its curvature 
does not change. This means that any subdivisions in 
Steps 2, 4 and 5 of the algorithm will not be perfor-
med. The approximation with tolerance 0.001 mm is 
visually identical to the cubic Bezier curve. The dots 
in Figure 6 show the start and end points of the six 
approximating arcs. A2-biarc: The approximation arc starts at the 

Bezier start point P1, goes through biarc joining 
point G and ends at Bezier end point P4. 

The best result according to the main approxi-
mation criterion – minimum number of arcs – was 
reached by using strategy S2 in approach A1. The 
minimal deviation from tolerance for this combination 
is acceptable as well. The second result was shown by 
S1 strategy in both approaches A1 and A2. The worst 
strategy is S4. 

To calculate the radius and center point of circular 
arc, use the well known mathematical fact that three 
points, which are not collinear (all on the same line), 
uniquely define a circle. 

The five strategies for a subdivision point selection 
are as follows: 
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Table 1. Approach A1 - approximating circle through Bezier middle point (t=0.5) 

Tolerance  
(mm) 

S1 
# of arcs and 

deviation (mm) 

S2 
# of arcs and 

deviation 

S3 
# of arcs and 

deviation 

S4 
# of arcs and 

deviation 

S5 
# of arcs and 

deviation 
0,1 1 

0.09122 
1 
0.09122 

1 
0.09122 

1 
0.09122 

1 
0.09122 

0,01 3 
0.002688 

3 
0.002688 

3 
0.008665 

19 
0.004908 

3 
0.002828 

0,001 6 
0.0008042 

7 
0.0003279 

7 
0.0006311 

158 
0.0009435 

8 
0.0002378 

0,0001 14 
0.00005609 

13 
0.00004939 

18 
0.00007249 

600 
0.00008308 

14 
0.00008147 

0,00001 28 
0.000009069 

27 
0.000008428 

34 
0.000009485 

1244 
0.000008982 

30 
0.000007759 

Table 2. Approach A2 - approximating circle through joining point G 

Tolerance 
(mm) 

S1 
# of arcs and 

deviation 

S2 
# of arcs and 

deviation 

S3 
# of arcs and 

deviation 

S4 
# of arcs and 

deviation 

S5 
# of arcs and 

deviation 
0,1 1 

0.09122 
1 
0.09122 

1 
0.09122 

1 
0.09122 

1 
0.09122 

0,01 3 
0.002688 

3 
0.002688 

3 
0.009194 

10 
0.002913 

3 
0.002828 

0,001 6 
0.0008042 

6 
0.0008042 

9 
0.0006025 

107 
0.0008818 

8 
0.0002378 

0,0001 14 
0.00005609 

15 
0.00009945 

16 
0.00007666 

562 
0.00009854 

14 
0.00008147 

0,00001 28 
0.000009069 

29 
0.000008888 

28 
0.000009796 

2012 
0,009950 

30 
0.000007759 

 
The second more complicated cubic Bezier curve 

is shown in Figure 7. It is defined by points 
P1=(17.5415, 0.9003), P2=(18.4778, 3.8448), P3= 
(22.4037, -0.9109), P4=(22.563, 0.7782).  

 

 
Figure 7. Bezier curve and its circular arcs 

Because of changing curvature the first subdivi-
sion occurred in Step 2 at point C=(20.9014, 0.9942).  

Let us take the first (left) segment. Because the 
biarc size of the current Bezier arc in Step 3 was 105 
degrees, in Step 5 it was subdivided at point L= 
(18.9614, 1.8617). The biarc size of the second 

segment was 95 degrees and according to Step 5 it was 
subdivided at point R=(22.0377, 0.4328).  

Incentre points of these four new Bezier curves 
(incentre point is used in approximation arc calcula-
tion approach A2) were: G1=(18.1237, 1.6791), G2= 
(19.5478, 1.686), G3=(21.7507, 0.5412), G4=(22.3907, 
0.4912). 

Tables 3 and 4, respectively, show the main results 
of approximation of the cubic Bezier curve displayed 
in Figure 7. The strategy S4 is rejected because of the 
worst results. 

The approximation with tolerance 0.001 mm is 
visually identical to the cubic Bezier curve as well. 
The dots in Figure 7 show the start and end points of 
the 16 approximating arcs. The black square shows the 
point where curvature changes (point C). 

Here we have the same result as that we obtained 
in previous experiment – strategy S1 in approximation 
arc calculation approach A1 and strategy S2 in both 
approaches are better than other variants. 
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Table 3. Approach A1 - approximating circle through Bezier middle point (t=0.5) 

Tolerance 
(mm) 

S1 
# of arcs and 

deviation 

S2 
# of arcs and 

deviation 

S3 
# of arcs and 

deviation 

S5 
# of arcs and 

deviation 
0,1 4 

0.02788 
4 
0.02788 

4 
0.02788 

4 
0.02788 

0,01 7 
0.008319 

7 
0.008319 

9 
0.007765 

7 
0.008319 

0,001 16 
0.0006906 

16 
0.0006906 

21 
0.0009281 

16 
0.0008586 

0,0001 32 
0.00009902 

32 
0.00009733 

41 
0.00009886 

34 
0.00009951 

0,00001 71 
0.000009450 

73 
0.000009799 

100 
0.000009556 

76 
0.000009792 

Table 4. Approach A2 - approximating circle through joining point G 

Tolerance 
(mm) 

S1 
# of arcs and 

deviation 

S2 
# of arcs and 

deviation 

S3 
# of arcs and 

deviation 

S5 
# of arcs and 

deviation 
0,1 4 

0.02788 
4 
0.02788 

4 
0.02788 

4 
0.02788 

0,01 7 
0.008319 

7 
0.008319 

7 
0.009532 

7 
0.007765 

0,001 16 
0.0006906 

16 
0.0006456 

24 
0.0009945 

16 
0.0008586 

0,0001 32 
0.00009902 

36 
0.00009973 

40 
0.00008949 

35 
0.00009859 

0,00001 71 
0.000009450 

74 
0.000007945 

78 
0.000009705 

76 
0.000009792 

 
6. Concluding remarks  

A problem of communication between CAD/CAM 
applications working with curve representations in dif-
ferent data formats was discussed. Some old but up to 
now very popular data formats, like Gerber, PDF, 
HPGL do not support splines and Bezier curves. 

Possible solutions for converting of circular arc of 
up to 90 degrees into a cubic Bezier arc were analyzed 
and universal equations for calculation of control 
points were proposed and tested. 

The problems of approximation of a cubic Bezier 
curve by circular arcs were discussed as well. As a 
result, an algorithm for approximation of an arbitrary 
cubic Bezier curve by circular arcs was described. Six 
different strategies for the basic algorithm step, Step 6 
– “Approximate the current Bezier curve by a set of 
circular arcs with given tolerance”, were proposed and 
tested experimentally.  

The proposed variations of the algorithms were 
tested using LPKF CircuitCAM software. One of the 
requirements for CAD/CAM software for the produc-
tion of SMT (Surface mount technology) solder paste 
stencils is to minimize the number of segments while 

producing a shape (pad or track). Each additional line 
or arc segment (one additional stop and one additional 
move) is not acceptable for prototyping and laser ma-
chines, because it decreases a production quality.  

The experiments showed that the best results were 
obtained by using S2 (cutting point) and S1 (middle 
point) strategies. We can see this from the empirical 
results presented in Figures 6 and 7. For strategy S2 in 
approach A1 (the approximation arc goes through 
points P1 = B(0),  M = B(0.5), P4 = B(1)), applied for 
0.0001 mm tolerance, the maximum deviations were 
0.4939×10−4 and 0.9733×10−4. The number of arcs is 
13 and 32, respectively.  

As it was mentioned in the definition of strategies 
S1 to S6, the strategy S3 within the approach A2 
(approximation arc goes through the biarc joining 
point) corresponds to the strategy proposed in [7]. 
These results for the same samples are as follows: the 
maximum deviation is 0.7666×10−4 and 0.8949×10−4 
and the number of arcs is 16 and 40, respectively. 

In this paper we restricted our attention to cubic 
Bezier curves only. Hoverer, Bezier curves quadratic, 
quartic and higher degree can be used in CAD/CAM 
software as well. 
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